
ECE 264 Advanced C Programming

2009/01/30

Contents

1 File Operations 1

2 Array of Unknown Size: Dynamic Memory Allocation 7

3 Memory Allocation by Function 11

4 Multidimensional Arrays 14

1 File Operations

Most of our programs, up to this point, do the same things over and over again. The
sizes of the arrays are fixed. The values of the elements are fixed. These programs are not
particularly exciting. To make these programs more useful, we must be able to handle
different sizes of arrays, with different element values.

We can use scanf to input an integer value by a user. However, this is useful if the
program needs only several numbers. If the program needs many numbers, any user
will soon run out of patience. Moreover, a very high percentage of data are stored in
computers already. It makes no sense to ask anyone to enter the data by hand again.
What we need is the ability to read and write data using files. The following program
writes six integers to a file and then reads the values back from the same file.

/* file1.c */
#include <stdio.h>
void writeFile(char * fileName, int * array, int numElem)
{
FILE * fptr = fopen(fileName, "w");
int cnt;
if (fptr == NULL)

{
printf("cannot write file %s\n", fileName);

ECE264 Purdue University 1 Yung-Hsiang Lu

return;
}

for (cnt = 0; cnt < numElem; cnt ++)
{

fprintf(fptr, "%d\n", array[cnt]);
}

fclose(fptr);
}

void readFile(char * fileName)
{
FILE * fptr = fopen(fileName, "r");
int val;
if (fptr == NULL)

{
printf("cannot read file %s\n", fileName);
return;

}
while (! feof(fptr))

{
fscanf(fptr, "%d", & val);
printf("%d\n", val);

}
fclose(fptr);

}

int main(int argc, char * argv[])
{
int array[] = {2, 6, 4, 2, 0, 9};
if (argc < 2)

{
printf("need file name\n");
return -1;

}
writeFile(argv[1], array, sizeof(array) / sizeof(int));
readFile(argv[1]);
return 0;

}

C provides a type called FILE. We use fopen to open a file; the first argument is the file’s
name and the second argument is the mode. The following modes are supported

ECE264 Purdue University 2 Yung-Hsiang Lu

“r” open to read
“w” open to write
“a” open to append
“rb” open to read in binary mode
“wb” open to write in binary mode
“ab” open to append in binary mode
“r+” both reading and writing

If fopen fails, it returns NULL (zero). This call may fail for many reasons, such as (1) the
file does not exist or (2) the file exits but the user has not right to read or to write. You
should always check the returned value of fopen before doing anything related to the
file. If you do not check, the program may crash because it tries to read a file that does
not exist. We can use fprintf to print values to a file. The first (additional) argument
is a pointer to a file, obtained by calling fopen earlier. After we finish printing to the
file, call fclose to flush the output and close the file. In most systems, writing to a file
does not occur to the physical storage (such as a disk) immediately. Instead, the output
is stored in a buffer (i.e. memory). This can significantly improve performance because
the next write may occur soon. Writing immediately to a disk can slow down a program
by thousands of times. Calling fclose ensures that all data in the buffer are flushed to
the disk so that the data are not lost. You should always call fclose when the file is
no longer needed. Reading a file is symmetric to writing a file. When we write, we use
fprintf. When we read, we use fscanf with the first argument as the file pointer. The
function feof (end-of-file) returns one if we have reached the end of the file.

In addition to fprintf and fscanf, there are many other functions to write to or to read
from files. Function fgets reads a string of n (second argument) characters. (Check the
manual “man fgets”.) We can write or read one character each time by using putc and
getc. The following program count the occurrence of character ’e’ in a file.

/* counte.c
count the occurrence of ’e’ */

#include <stdio.h>
int main(int argc, char * argv[])
{
FILE * fptr;
int ch;
int counter = 0;
if (argc < 2)

{
printf("need file name\n");
return -1;

}
fptr = fopen(argv[1], "r");

ECE264 Purdue University 3 Yung-Hsiang Lu

if (fptr == NULL)
{

printf("open file fail\n");
return -1;

}
while ((ch = getc(fptr)) != EOF)

{
if (ch == ’e’)

{ counter ++; }
}

fclose (fptr);
printf("e appears %d times\n", counter);
return 0;

}

Exercise (Potential ExamQuestion):Write a program that can count the occurrence of ’a’
followed by any one character followed by ’c’. The regular expression is a?c. The symbol
? means any character (and exactly one character). Do not count if ’a’ and ’c” are in two
different lines.

The following program generates two vectors and writes the elements into a file. The
file’s name is one input argument and the size of the vector is another input argument.

/* genvector.c */
/* generate two vectors of the same size */
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
void generate2Vector(char * fileName, int numElem)
{
FILE * fptr = fopen(fileName, "w");
int cnt;
if (fptr == NULL)

{
printf("cannot write file %s\n", fileName);
return;

}
fprintf(fptr, "%d\n", numElem);
for (cnt = 0; cnt < numElem; cnt ++)

{
fprintf(fptr, "%d %d\n", rand() % 1000, rand() % 1000);

}
fclose(fptr);

ECE264 Purdue University 4 Yung-Hsiang Lu

}

int main(int argc, char * argv[])
{
struct timeval currTime;
gettimeofday(&currTime, NULL);
srand(currTime.tv_usec);

if (argc < 3)
{

printf("file name and number of elements\n");
return -1;

}
generate2Vector(argv[1], (int)strtol(argv[2], (char **)NULL, 10));
return 0;

}
/*
output (one instance)
17
299 535
553 941
115 618
112 114
548 410
922 390
342 552
162 140
177 186
257 960
634 62
969 788
213 433
903 883
472 732
619 252
193 772

*/

The next program reads the elements, add each pair, and print the sums.

/* addvector.c */
/* add two vectors */
#include <stdlib.h>

ECE264 Purdue University 5 Yung-Hsiang Lu

#include <stdio.h>
void add2Vector(char * fileName)
{
FILE * fptr = fopen(fileName, "r");
int numElem;
int val1;
int val2;
int sum;
int elemCnt = 0;
if (fptr == NULL)

{
printf("cannot read file %s\n", fileName);
return;

}
fscanf(fptr, "%d", & numElem);
printf("%d elements\n", numElem);
while ((elemCnt < numElem) && (! feof(fptr)))

{
fscanf(fptr, "%d %d", & val1, & val2);
sum = val1 + val2;
printf("%d + %d = %d\n", val1, val2, sum);
elemCnt ++;

}
fclose(fptr);

}

int main(int argc, char * argv[])
{
if (argc < 2)

{
printf("need file name and\n");
return -1;

}
add2Vector(argv[1]);
return 0;

}
/*
output (one instance)
17 elements
299 + 535 = 834
553 + 941 = 1494
115 + 618 = 733

ECE264 Purdue University 6 Yung-Hsiang Lu

112 + 114 = 226
548 + 410 = 958
922 + 390 = 1312
342 + 552 = 894
162 + 140 = 302
177 + 186 = 363
257 + 960 = 1217
634 + 62 = 696
969 + 788 = 1757
213 + 433 = 646
903 + 883 = 1786
472 + 732 = 1204
619 + 252 = 871
193 + 772 = 965
193 + 772 = 965

*/

2 Array of Unknown Size: Dynamic Memory Allocation

The previous program can handle different sizes of vectors. This is a great improvement.
However, sometimes wewant to keep the elements for later use. For example, wemaywant
to sort the elements. It will be very helpful if we can store the elements in arrays, since we
already know how to sort elements in arrays. We are now ready to handle arrays whose
sizes are not knownwhen the program is written. The sizes are knownwhen the program
starts running. We are going to use malloc to allocate memory for the arrays.

/* sortvector.c */
/* read two vectors,

sort their elements together */
#include <stdlib.h>
#include <stdio.h>

void swap(int *p, int *q)
{
int tmp;
tmp = *p;

*p = *q;

*q = tmp;
}

void bubbleSort(int a[], int n)

ECE264 Purdue University 7 Yung-Hsiang Lu

{
int i, j;
for (i = 0; i < n - 1; ++i)

/* same as i ++ */
{

for (j = i + 1; j < n; j++)
{
if (a[i] > a[j])

{
swap(&a[i], &a[j]);

}
}

}
}

int main(int argc, char * argv[])
{
int * vecptr;
int elemCnt = 0;
int numElem;
int val1;
int val2;
FILE * fptr;
if (argc < 2)

{
printf("need file name and\n");
return -1;

}
fptr = fopen(argv[1], "r");
if (fptr == NULL)

{
printf("cannot read file %s\n", argv[1]);
return -1;

}
fscanf(fptr, "%d", & numElem);
printf("%d elements\n", numElem);
vecptr = malloc(2 * numElem * sizeof(int));
if (vecptr == NULL)

{
printf("memory allocation fail\n");
return -1;

}

ECE264 Purdue University 8 Yung-Hsiang Lu

while ((elemCnt < numElem) && (! feof(fptr)))
{

fscanf(fptr, "%d %d", & val1, & val2);
vecptr[2 * elemCnt] = val1;
vecptr[2 * elemCnt + 1] = val2;
elemCnt ++;

}
fclose(fptr);
bubbleSort(vecptr, 2 * numElem);
for (elemCnt = 0; elemCnt < 2 * numElem; elemCnt ++)
{

printf("%d ", vecptr[elemCnt]);
}

printf("\n");
free(vecptr);
return 0;

}

/*
17 elements
62 112 114 115 140 162 177 186 193 213 252 257 299 342 390 410 433 472
535 548 552 553 618 619 634 732 772 788 883 903 922 941 960 969

*/

C has two functions to allocate memory: malloc and calloc. The former takes one
argument and the latter takes two.

malloc(n * sizeof(int));
calloc(n, sizeof(int));

The former is more commonly used because calloc initializes the allocated memory to
zero. In most cases, this is simply wasting time. In our program, after the memory is
allocated, the elements are assigned using the values from the file. It is unnecessary to
initialize the memory to zero.

When you call malloc, you should always check whether the allocation is successful.
If it fails, take the appropriate steps to handle it. If you do not checkwhether the allocation
is successful, the program will crash when it tries to use the memory.

After allocating memory, we can use it as the arrays that we have seen before. When this
space is no longer needed, call free to release the space. A typical structure of using
dynamically allocated memory is

ECE264 Purdue University 9 Yung-Hsiang Lu

int * intPtr;
...
intPtr = malloc(numElem * sizeof(int));
... /* use the array */
free(intPtr);

Releasing memory isn’t really a great deal in this very simple program. When your pro-
grams become more complex, memory management can easily become a major source
of mistakes. Very often, we reuse a pointer by assigning it to point to somewhere else. If
we do not release the memory before the assignment, that piece of memory can no longer
be reached. This is called memory leak.

int * intPtr;
...
intPtr = malloc(numElem * sizeof(int));
... /* no free */
intPtr = malloc(numElem * sizeof(int));
/* memory leak, the previous memory space is lost */

For the operating system, the memory still belongs to the program. Memory leak is a
silent killer of programs. The total amount of available memory space is finite. If a pro-
gram leaks memory, the available memory gradually shrinks. Eventually, the operating
system will refuse the allocate more memory (malloc returns 0) and the program will
likely crash. Modern computers usually have large (virtual) memory space. It can take
weeks for a program to run out of memory. A programmay execute without any problem
for weeks and then suddenly crash.

Fortunately, there are tools checking memory leak. In Linux, valgrind can check mem-
ory leak. Suppose sortvector is the name of the program, we can check whether there
is memory leak by using this command

valgrind --leak-check=yes ./sortvector data.in

If there is no problem, the output is something like this

==21608== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 12 from 1)
==21608== malloc/free: in use at exit: 0 bytes in 0 blocks.
==21608== malloc/free: 2 allocs, 2 frees, 488 bytes allocated.
==21608== For counts of detected errors, rerun with: -v
==21608== All heap blocks were freed -- no leaks are possible.

ECE264 Purdue University 10 Yung-Hsiang Lu

If we remove free(vecptr);, the report is

==21671== LEAK SUMMARY:
==21671== definitely lost: 136 bytes in 1 blocks.
==21671== possibly lost: 0 bytes in 0 blocks.
==21671== still reachable: 0 bytes in 0 blocks.
==21671== suppressed: 0 bytes in 0 blocks.
==21671== Reachable blocks (those to which a pointer was found) are not shown.
==21671== To see them, rerun with: --show-reachable=yes

Not surprisingly, we leak 17 elements of double, 8 × 17 = 136 bytes. You should always
check your program leaks memory.

Some languages, such as Java, have built-in garbage collection. After a piece of memory is
allocated and later becomes unreachable (called garbage), the languages will reclaim that
piece of memory. Programmers do not have to explicitly release memory. C does not
collect garbage because garbage collection can (1) slow down a program and (2) make a
program’s execution time less predictable.

3 Memory Allocation by Function

We can also allocate memory inside a function. When the function finishes, the memory
space is returned to the caller. The caller is responsible for releasing the memory.

/* mallocfunc.c */
/* read two vectors, sort their elements together */
#include <stdlib.h>
#include <stdio.h>
int read2Vector(char * fileName, int * * vec1, int * * vec2)
{
int numElem;
int val1;
int val2;
int elemCnt = 0;
FILE * fptr = fopen(fileName, "r");
(*vec1) = 0; /* make sure it is invalid */
(*vec2) = 0;
if (fptr == NULL)

{
printf("cannot read file %s\n", fileName);

ECE264 Purdue University 11 Yung-Hsiang Lu

return 0;
}

fscanf(fptr, "%d", & numElem);
printf("%d elements\n", numElem);

* vec1 = malloc(numElem * sizeof(int));

* vec2 = malloc(numElem * sizeof(int));
if (((* vec1) == NULL) || ((* vec2) == NULL))

{
printf("memory allocation fail\n");
return -1;

}
while ((elemCnt < numElem) && (! feof(fptr)))

{
fscanf(fptr, "%d %d", & val1, & val2);
(*vec1)[elemCnt] = val1;
(*vec2)[elemCnt] = val2;
elemCnt ++;

}
fclose(fptr);
return numElem;

}

void print2Vector(int * vec1, int * vec2, int numElem)
{
int elemCnt;
for (elemCnt = 0; elemCnt < numElem; elemCnt ++)

{
printf("%d %d\n", vec1[elemCnt], vec2[elemCnt]);

}
}

int main(int argc, char * argv[])
{
int * v1ptr;
int * v2ptr;
int numElem;
if (argc < 2)

{
printf("need file name and\n");
return -1;

}
numElem = read2Vector(argv[1], & v1ptr, & v2ptr);

ECE264 Purdue University 12 Yung-Hsiang Lu

if (numElem < 0) { return -1; }
print2Vector(v1ptr, v2ptr, numElem);
free(v1ptr);
free(v2ptr);
return 0;

}

Why do we need to use two asterisks for the arguments? Why do we need to use amper-
sands when calling read2Vector?

int read2Vector(char * fileName, int * * vec1, int * * vec2)
...
int * v1ptr;
int * v2ptr;
numElem = read2Vector(argv[1], & v1ptr, & v2ptr);

If x is an integer, &x is the address. If we want to change x’s value in a function, we
need to pass its address to the function and use * x = val;. Remember an array is
represented by the address of the first element. This address is stored as a pointer. That is
the reason we declare v1ptr and v2ptr as pointers.

We do not know where they point to because malloc will allocate memory and tell us.
In the earlier example (sortvector), we use

vecptr = malloc(2 * numElem * sizeof(int));

to assign where vecptr points to.

When a function allocates memory, we cannot pass v1ptr directly to read2Vector and
modify * vec1. If we do so, we are changing the value stored at the location pointed by
vec1. However, vec1 is not pointing anywhere at this moment yet. This will cause the
program to crash.

Instead, we have to modify where vec1 points to. That means, modifying the value of *
vec1. In order to modify * vec1, we have to pass * * vec1 as the argument.

int read2Vector(char * fileName, int * * vec1, int * * vec2)

* vec1 = malloc(numElem * sizeof(int));
...
int * v1ptr;
int * v2ptr;
numElem = read2Vector(argv[1], & v1ptr, & v2ptr);

ECE264 Purdue University 13 Yung-Hsiang Lu

4 Multidimensional Arrays

We have seen this line many times

int main(int argc, char * argv[])

We know the first argument is an integer. What is the second argument? It is something
related to a pointer since there is “*”. It is also something related to an array because of
“[]”. What is it? It means argv is a two-dimensional array of characters.

Why do we need multi-dimensional arrays? Consider an example when you want to list
the travel (flight) time between pairs of cities.

To \ From Boston Chicago New York San Francisco
Boston - 150 60 270
Chicago 140 - 130 240
New York 60 140 - 290

San Francisco 260 230 280 -

(The flight time may be unsymmetrical due to wind.)

It is naturally expressed by a two-dimensional array. If you want to express the location,
you may want to use a three-dimensional array for x, y, and z directions.

The following are examples to declare and define multi-dimensional arrays

/* mdarray1.c */
int a[100];
/* 1 dimensional, 100 elements */

double b[10][6];
/* 2 dimensional, 60 = 10 x 6 elements */

int c[5][3][2];
/* 3 dimensional, 30 = 5 x 3 * 2 elements */

double v[5][5][5];
/* 3 dimensional, 125 = 5 * 5 * 5 elements */

ECE264 Purdue University 14 Yung-Hsiang Lu

