ECE 264 Advanced C Programming

2009/01/28

Contents

1 Pointer, Address, and Value 1
2 Bubble Sort 3
3 String 6
4 Modus Tollens 9
5 How to Write Correct Programs 10
1 Pointer, Address, and Value

Two essential components in a computer are the processor and the memory. The memory
is organized into a list. Each element in the list has an address and a value. We, as pro-
grammers, can assign the values but we have no control of the addresses. The addresses
are assigned by the operating systems (such as Windows or Linux). The following is one
example of

int a = 5;
char b = "'e’;

address \ value \ comment
0XBF800D40 51 /*a*/
0XBEF800D44 e | /*b, ASCII 101 */

here 0X means hexadecimal. When we use a, the compiler knows that we are using the
address of 0OXBF800D40. When we write

ECE264 Purdue University 1 Yung-Hsiang Lu

a =171

the compiler modifies the value at the address of 0XBF800D40. We can obtain the address
of a by adding an ampersand & in front of a:

& a
returns 0OXBF800D40. C uses pass by value when calling a function.

int add(int a, int b)
{

}

return (a + b);

The arguments a and b take the values. When calling the function
int x = add(7, 9);

a has value 7 and b has value 9. When calling the function using variables

int s = 11;
int t = 32
int x = add(s, t);

a has value 11 and b has value 32. The function add has no information about the address
of s or t. Hence, it is not possible to change s or t inside the function and make the
change visible to the caller. If we want to make the change visible to the caller, we have
to use pointers.

void swap(int * p, int * Q)

{
}

int x 5;

int y 11;

swap(& x, &vy);

[+ x =11 and y = 5 now */

Calling swap using the addresses of X and y allows swap to directly modify the values
stored at the addresses. Therefore, the change is visible after the function returns.

ECE264 Purdue University 2 Yung-Hsiang Lu

2 Bubble Sort

With the swap function and the addresses of array elements, we can sort the elements of
an array. Sorting is one of the most important steps in many programs. Sorting means
ordering data based on a particular part (also called key) in each item. For example, we may
sort the list of students based on their last names. Another example is sorting airplane
tickets by prices or arrival time. You can sort emails by the arrival dates. Bubble sort is a
simple way to sort elements. It will become clear why it is called bubble sort in a moment.

/= bubbl esort.c =/
#i ncl ude <stdi o. h>
voi d swap(int *p, int *q)

{.
i nt t np;
tnp = *p;
*p:*q;
*q:trrp;
}
void printArray(int a[], int n) /x nis the size of a[]
{. .
int i;
for (i =0; i < n; ++i)
{ printf("% ", a[i]); }
printf("\n");
}
voi d bubbl eSort(int a[], int n)
int i, j;
/= pay special attention to the ranges of i and j */
for (i =0; i <n- 1; ++i) /+ sane as i ++ */
{
printf("\ni = %l\n", i);
for (j =1 + 1, J < n; j++)
{
if (a[i] >a[j])
{ swap(&a[i], &a[j]); }
printArray(a, n);
}
}
}

ECE264 Purdue University 3

*/

Yung-Hsiang Lu

int main(int argc,

= {7, 3, 66, 3,

char * argv[])

-5, 22, 77, 2};

int nunmkEl em = sizeof (intArray) / sizeof(int);

{
int intArray []
bubbl eSort (i nt Array,
return O,

}

| *
Qut put
i =0
3766 3-522
37 66 3 -5 22
3766 3 -5 22
-5 7 66 3 3 22
-5 7 66 3 3 22
-5 7 66 3 3 22
-5 7 66 3 3 22
=1
-5 7 66 3 3 22
-5 3667 3 22
-5 366 7 3 22
-5 366 7 3 22
-5 366 7 3 22
-5 2667 3 22
i =2
-5 27 66 3 22
-5 2 366 7 22
-5 23667 22
-5 23667 22
-5 23667 22
i =3
-5 237 66 22
-5 237 66 22
-5 237 66 22
-5 2 3 366 22
I =4
-5 2 3 3 22 66

ECE264 Purdue University

77
77
77
77
77
77
77

77
77
77
77
77
77

77
77
77
77
77

77
77
77
77

77

WNDNDNDDNDDN NDNNNNDNDDN

wWwwww

N www

nuntl em

Yung-Hsiang Lu

332266 777
337 66 77 22

7 66 77 22
7 22 77 66

-5 2337 2266 77

If you look carefully, in each iteration of the outer loop (i), the i smallest value if moved
to the i’ element. After the first (i =0) iteration, the smallest value (-5) is the first element.
After the second (i = 1) iteration, the second smallest value (2) is the second element. It is
called “bubble” sort because the smallest value is like a bubble gradually moving toward
the surface.

It contains two levels of iterations. The first goes from zero to the number of elements -1.
The second goes from i + 1 to the last element. If the i" element is larger than any of the
(i + 1) to the last elements, the two elements are swapped. Remember this pattern of
bubble sort because it is the next quiz question. You will not be allowed to use your note
in the next quiz.

How should we change the program if we want the result in the descending order, instead
of the ascending order? It is simple. We just change this line

it (a[i] >a[jl])

to

if (ali] <a[j])

Exercise (Potential Exam Question): To test whether you truly understand bubble sort,
try this exercise. Write a function that takes an array of integers and an integer n as
the number of elements. When the function finishes, the elements are ordered in the
following way:

e The smallest element is the first element (index = 0).

e The second smallest element is the last element (index =n — 1).

ECE264 Purdue University 5 Yung-Hsiang Lu

The third smallest element is the second element.

The fourth smallest element is the second last element.

e The i'" smallest element is the (%)th element (index = %), when 7 is an odd num-

ber.

e The i"" smallest element is the (%)™ last element (index = n —), when i is an even
number.

original bubble sort

2 13 25 29 29 46 57 61 68

* %

Kk kkkkk*k

khkkkhkhkkkhkkkkkxk

EE R R R R I I I O S I O

R R I I S I I O I I R I

Rk I Sk S S I O I I

R S I S S O I S kS kS

EE R I R I R R O I R I I I R I R R R

SRR R R I R R S R R R S R R R R R I R R R R I

O©CoO~NOUIS,WNE OO

EIE SRR I I S R I I S R R S S I R Ik R I Rk R I kI O

new bubbl e sort
2 13 29 46 61 68 57 29 25 8

* %

EIE IR I I I

R R I Ik S I O I S I I

R IR S I Sk S S S bk S S kS kR I

LR RS R R R EEEEREEEEEEREEEREEEREEEEEEREEEEEREEEREEREEEREEEREEEEEEEEREEEE]

ERE R R R I R I I R I R I R R R S R I R R
R R R I R R R I R R R I R I R I I O R R R

IR R I S b I I O I R I

Rk b Sk b S R SRk S

©CoOo~NOOOUITA,WNEFO

Kk kkkkk*k

One simple solution is to use bubble sort first and then reassign the elements based on
the rules. Don’t do that. Modify the bubbl eSort function directly.

3 String

What is a string? You can think of a string as a word or a sentence enclosed by double
quotations. “Hello” is a string. “Good Morning” is another string. “We are studying C
programming.” is yet another string. A string can also include symbols, for example,

ECE264 Purdue University 6 Yung-Hsiang Lu

“If youadd xand y (x +y), youwill get z (x + y = z).”
“A string may include symbols, such as $#@%&—.”

In C, a string is nothing but an array of characters. Each element is char . The following
is an example to create some strings.

[+ stringl.c =/

#i ncl ude <stdio. h>

int main(int argc, char * argv[])

{
char strif]
char * str2
char str3[]
printf("strl
printf("str2
printf("str3
return O,

}

| *
out put :
strl = Hell o ECE264 Students
str2 = This is another string.
str3 = abxy

*/

"Hel | o ECE264 Students”;
"This is another string.";
{ra, b, "x, "y, "\0};
%\n", strl);

%\ n", str2);

%\ n", str3);

In C, printing a string uses %. There are different ways to create strings. The first creates
an array of char . The second uses a pointer to a constant array of char because gcc will
create this array and assign the address to the pointer st r 2. The third creates another
string. What is "\0"?

In C, each string must end with the special character "\0’". If you want to create a string
“ECE264”, you must have an array of 7 characters. The additional element stores the
ending character "\0’. It is a common mistake forgetting to add the ending character in
a string. C library has some functions to manipulate strings.

[+ string2.c */

#i ncl ude <string. h>

#i ncl ude <stdi o. h>

int main(int argc, char * argv[])

{
char stri[]
char = str2
char str3[]

"This is a string.";
"Hel | o ECE264 Students”;
{1 a1 , 1 b’ , 1 X1 , b y1 , L \01 };

ECE264 Purdue University 7 Yung-Hsiang Lu

char str4[] = "ECE264";
char str5[80];

printf("strlen(strl)
printf("strlen(str4)
printf("strcnp(strl, str2)

%\ n", strlen(strl));

%\ n", strlen(str4));

%\ n", strcnp(strl, str2));
printf("strcnp(strl, str3) %\ n", strcnp(strl, str3));
printf("strcnp(str2, str3) %\ n", strcnp(str2, str3));
printf("strchr(str2, "4) = %\n", strchr(str2, '4));
strcpy(str5, str2);
printf("strcpy(str5, str2)
strcat(str5, str3);
printf("strcat(str5, str3)

%\ n", strb);

%\ n", strb)

return O,
}
| *
out put :
strlen(strl) = 17
strlen(str4) =6
strecnp(strl, str2) =1
strecnp(strl, str3) = -1
strecnp(str2, str3) = -1
strchr(str2, '4') = 264 Students
strcpy(str5, str2) = Hello ECE264 Students
strcat(str5, str3) = Hello ECE264 Student sabxy
*/

e strl en: returns the length of the string, without counting the ending "\0".

e st rcnp: compares two strings based on the dictionary order. If the first string would
appear before the second in a dictionary, the value is -1. If the two strings are the
same, the value is zero. If the first would appear latter, the value is 1. The ASCII
(American Standard Code for Information Interchange) value of 'T" is 84 and the
value of “a” is 97. Thus, the first string is smaller than the third one. In ASCII, A - Z
are 65-90; a - z are 97 - 122.

You can use strncnp with the third argument; this argument specifies the max-
imum number of characters to compare. If a string is shorter than this number,
st r ncnp compares up to only the ending character "\0".

e strchr returns the address of the first appearance of the character in the second
argument. It returns NULL if this character does not appear in the string. You may
find this function useful for PA1.

ECE264 Purdue University 8 Yung-Hsiang Lu

st rcpy copies the second string to the first string. This function does not check
whether the destination (first argument) has enough space. If the destination does
not have enough space, the result is undefined (i.e. the program may crash).

One solution is to copy as many characters as the space in the destination by using
st r ncpy. This function has the third argument specifying the number of characters
to copy. Suppose buf is an array of characters. The following code copies as many
as allowed and explicitly adds the ending character to terminate the string.

strncpy(buf, input, sizeof(buf) - 1);
buf [si zeof (buf) - 1] = "\0;

You must be very careful when you handle strings. Always terminates strings by
adding "\0” when you are not sure.

strcat concatenates the second string to the first string. C does not check whether
the first string has enough space. You can use strncat to control the number of
characters added to the destination (first) string.

One common security problem related to strings is called buffer overflow attack. This type
attack gives ridiculously long inputs to crash a program or make it misbehave. The Morris
worm in 1988 was one of the first large-scale attacks through the Internet using buffer
overflow. Even though the worm did not intend to cause damage (such as erasing files),
the worm grew so fast and shut down the Internet. Since then, numerous attackers have
tried to use buffer overflow and in many cases succeeded because programmers forget to
restrict the lengths of strings.

4 Modus Tollens

Consider this code segment

{
}

f (x == 0)

y =0;

After running this code, what can we say about X if we know y is not zero? We know that
X must not be zero. This concept is called modus tollens (Latin).

What can we say about X if y is indeed zero? We do not know whether X is zero or not
because y may be zero originally. Consider the following case:

ECE264 Purdue University 9 Yung-Hsiang Lu

int x = 3;
int 'y =0;
if (x == 0)
{

}

y =0;

After this condition, y is zero even though X is not zero. This is a common mistake. If y
is zero, you cannot say anything about X. If y is not zero, X must not be zero. When you
debug a program and you know that y is zero, you cannot assume that X is also zero.

When X is not zero, we do not know whether y is zero or not.

int x = 3;
int y =7? /% can be zero or not zero */
if (x == 0)
{
y =0;
}

/[y may or may not be zero. W don’t know. =/

One way to understand this is the following: If it is raining, the street must be wet. If
the street is dry, it must not be raining. If the street is wet, it may or may not be raining.
The street can be wet for many reasons. It could be raining an hour ago. Maybe a water
pipe bursts. Maybe a river overflows (heavy rain from upper stream or a dam is broken).
Maybe it snowed yesterday and the snow is melting now. We do not know whether it is
raining or not if the street is wet. We do know that it is not raining if the street is dry.
Also, if it is not raining, we do not know whether the street is dry or wet.

5 How to Write Correct Programs

Writing bad (“buggy”’) programs and then debugging them is a common approach among
many students. It is better to think carefully before writing the programs and save debug-
ging time. There are many ways to improve the chance of writing correct programs, for
example,

e Use meaningful names.

e Format code and use proper indentation.

ECE264 Purdue University 10 Yung-Hsiang Lu

Use brackets or parentheses to improve readability.

Create functions and avoid copy-paste code.

Write simple and easy-to-ready statements.

If you are not sure how to do something, write a small experimental program first.
After you understand how it works, integrate it into the larger program. This may
seem wasting time because you do the same thing twice. However, you can save
time by debugging the smaller program first. Debugging the larger program can
take much longer.

Never attempt to write “mysterious” code that can be understood by you only. Some
students think mysterious code improves job security because “You can’t get fired if no-
body understands your code.” This is completely wrong. Many companies have regular
code reviews— a group of people, including your supervisor, sit together reading your
code line by line. You have to explain what you have done, why you did it, and how
you did it. Your code will not be integrated into the company’s system unless it passes
the code reviews. If your code is mysterious, you will be fired before you can cause any
damage to the company.

If your code passes code review and is integrated into the company’s system, can you
start writing mysterious code? If nobody understands your code, you will never get
a promotion. You are so important to the company and the company has to keep you
forever— at the same position. Would you like a career that has no chance of promotion?

Never write bad code. It will hurt your career.

ECE264 Purdue University 11 Yung-Hsiang Lu

