
ECE 264 Advanced C Programming

2009/01/21

Contents

1 Boolean Logic 1

2 Control Flow 3

2.1 if . 3

2.2 for . 4

2.3 while . 5

2.4 switch-case . 6

3 Common Mistakes in Flow Control 8

3.1 Brackets and if-else Pairs . 8

3.2 if-else . 9

3.3 default in switch . 11

1 Boolean Logic

C uses Boolean logic to control programs’ flow. The following are commonly used logic
expressions

• a > 0 : true if a is larger than zero

• a && b: true if both a is true and b is true

• a || b: true if a is true or b is true, or both are true

ECE264 Purdue University 1 Yung-Hsiang Lu

• a == b: true if a and b have the same value. Be careful when you use this when a or
b (or both) is a floating-point number. Due to limited precision, two floating-point
numbers may be slightly different.

/* precision.c */
double val = 1e-7;
int cnt;
for (cnt = 0; cnt < 10000000; cnt ++)
{
val += 1e-7;

}
printf("%f %e %d\n", val, val - 1, (val == 1.0));

The output is

1.000000 9.975017e-08 0

showing that val is not exactly 1.

• a <= b: true if a is smaller than or equal to b

• ! a: true if a is false

You can use a combination of different conditions. For example

if ((a > 0) && (b < c))

is true if a is greater than 0 and b is smaller than c.

When you have a complex condition, remember to use parentheses for clarity. If the
expression is too complex, break it into several conditions. Writing a clear program can
help you discover mistakes more easily.

Minimal evaluation (also called short-circuit evaluation):

If a is true in (a || b), b is not evaluated.

If a is false in (a && b), b is not evaluated.

Therefore, the order is not symmetric. For example

if ((index < size) && (array[index] == 0))

is different from

if ((array[index] == 0) && (index < size))

when index exceeds size.

ECE264 Purdue University 2 Yung-Hsiang Lu

2 Control Flow

2.1 if

If a computer program can do only one thing, the program isn’t particularly useful. Imag-
ine that you go to an on-line store and the store sells only one item. You cannot choose
anything else. A program is more useful if it can make some decisions; for example, you
decide to buy a book on C programming not a book on Java programming and you want
the book to arrive sooner (and pay more for shipping).

C provides several ways to control the execution of a program. All of them require deci-
sions based on true-false logic:

if (something is true)
{

do something
}
else /* this part is optional */
{

do something else
}

This “something” can be jumping to another location of the program and executing the
code there. We have seen several examples using C’s control

/* ifargc.c */
int main(int argc, char * argv[])
{
int val1;
int val2;
if (argc < 3)

{
fprintf(stderr, "need two numbers\n");
return -1;

}
val1 = (int)strtol(argv[1], (char **)NULL, 10);
val2 = (int)strtol(argv[2], (char **)NULL, 10);
printf("%d + %d = %d\n", val1, val2, add(val1, val2));
return 0;

}

ECE264 Purdue University 3 Yung-Hsiang Lu

This uses an if condition. If the value of argc is smaller than 3, the program prints an
error message and return -1. Otherwise, the program continues to assign the values to
val1 and val2.

2.2 for

Another example:

/* foragrc.c */
for (cnt = 0; cnt < argc; cnt ++)
{
printf("%s\n", argv[cnt]);

}

This for block is equivalent to the following

/* goto.c */
cnt = 0;
repeat_label:
if (! (cnt < argc))
{
goto done_label;

}
printf("%s\n", argv[cnt]);
cnt ++;
goto repeat_label;
done_label:

In general, you should avoid goto because too many goto’s can make the program’s flow
hard to analyze.

/* for3.c */
int sum;
int cnt;
sum = 0;
for (cnt = 0; cnt < vecSize; cnt ++)
{
sum += vec[cnt];

}

The compiler does not care about the format (space, tab...) but a program can be harder
to read. Many text editors will indent your C programs, for example emacs and eclipse.
In eclipse, click the right mouse button, select Source and Format, or press Shift-
Control-F. Proper indentation will reduce the chance of mistakes.

ECE264 Purdue University 4 Yung-Hsiang Lu

/* badindent.c */
int sum; int cnt;
sum = 0; for (cnt = 0; cnt <

vecSize;
cnt ++) {

sum +=
vec[cnt];

}

2.3 while

There is one important restriction of using for. We have to know howmany iterations to
execute in advance. Suppose a program needs a positive number from a user

/* whilescan.c */
do
{
printf("enter a positive number: ");
scanf("%d", & cnt);

} while (cnt <= 0);
printf("Correct! %d is positive.\n", cnt);

This will keep asking the user until the user enters a positive number. The following is an
example of execution:

enter a positive number: -9
enter a positive number: -7
enter a positive number: 0
enter a positive number: 1
That’s right; 1 is a positive number.

In C,

do /* some code */ while(condition);

will execute at least once because the condition is checked after the code. We can also
move the while condition to that top. In that case, the code may not execute at all. The
following example is equivalent to for:

ECE264 Purdue University 5 Yung-Hsiang Lu

/* whilefor.c */

int cnt = 0;
while (cnt < vecSize)
{
printf("%d\n", vec[cnt]);
cnt ++;

}

/* same as */
for (cnt = 0; cnt < vecSize; cnt ++)
{
printf("%d\n", vec[cnt]);

}

This example shows that while can implement for.

2.4 switch-case

Sometimes, you want to distinguish several cases. For example, a computer game has to
check whether a user presses up (u), down (d), left (l), and right (r) keys. This can be done
by using several if’s.

/* multiif.c */
if (key == ’u’) {
/* move up */
}
else {if (key == ’d’)

{ /* move down */} else
{

if (key == ’l’)
{

/* move left */
} else {if (key == ’r’) { /* move right */
}
else

{
/* invalid, error */

}
}

}
}

ECE264 Purdue University 6 Yung-Hsiang Lu

There is a better way to handle this situation:

/* switch.c */
switch (key)
{
case ’u’:

/* move up */
break;

case ’d’:
/* move down */
break;

case ’l’:
/* move left */
break;

case ’r’:
/* move right */

default:
/* invalid, error */

}

Using switchmakes the code easier to read. It is necessary to put break before the next
case; otherwise, the code in the next case will also be executed. In the next example,
pressing ’U’ and ’u’ executes the same code.

/* switch2.c */
switch (key)
{
case ’u’: /* no break */
case ’U’:

/* move up */
break;

case ’d’:
case ’D’:

/* move down */
break;

case ’l’:
/* move left */
break;

case ’r’:
/* move right */

default:
/* invalid, error message */

}

ECE264 Purdue University 7 Yung-Hsiang Lu

Forgetting to add break in correct locations is a common mistake.

3 Common Mistakes in Flow Control

3.1 Brackets and if-else Pairs

Flow control is critical in most programs. Therefore, it is very important to write the
control correctly. The following are some common mistakes and how to avoid them. In
C, the following two pieces of code are equivalent

if (a > 0)
{

b = -1;
}

and

if (a > 0)
b = -1;

If there is only one statement controlled by if, it is unnecessary to use brackets. However,
the first (using brackets) is better because it prevents you from making the following
common mistake. If you add another statement later, without the bracket, you may add
the statement directly and the new statement is no longer controlled by the condition.

if (a > 0)
b = -1;
c = -2;

is equivalent to

if (a > 0)
{

b = -1;
}
c = -2; /* not controlled by a’s value */

ECE264 Purdue University 8 Yung-Hsiang Lu

and is different from

if (a > 0)
{

b = -1;
c = -2; /* controlled by a’s value */

}

Adding the brackets can reduce the chance of mistakes.

3.2 if-else

In C, else corresponds to the closest if.

What is the value of z after executing this code?

/* ifelse1.c */
int x = 1;
int y = 2;
int z = 3;
if (x > 10)

if (y > 4)
z = -1;

else
z = -2;

Is z 3, -1, or -2? Which of the following two corresponds to the code above?

ECE264 Purdue University 9 Yung-Hsiang Lu

/* ifelse2.c */
if (x > 10)
{
/* nothing between this bracket */
if (y > 4)

{
z = -1;

}
else

{
z = -2;

}
/* and this bracket will be executed */

}
/* z unchanged since x > 10 is false */

or

ECE264 Purdue University 10 Yung-Hsiang Lu

/* ifelse3.c */
if (x > 10)
{
if (y > 4)

{
z = -1;

}
}
else
{
z = -2; /* z is changed to -2 because x < 10 */

}

The answer is z = 3 (unchanged) because the else corresponds to the closest (second) if.
This is another reason you should add brackets to ensure that the code is exactly what
you want. You should indent the code because proper indentation helps you visually
find the mistakes. This is very easy since many tools can do it for you, including emacs,
eclipse, or a shell program called indent.

3.3 default in switch

You should always add the default condition at the bottom of a switch block. You
may think that the cases have covered all possible scenarios. However, it is common
that you miss one case. Adding default and printing an error message can help you
discover the mistake early.

ECE264 Purdue University 11 Yung-Hsiang Lu

