
ECE264 Fall 2013
Exam 2, October 24, 2013

If this is an on-line exam, you have 80 minutes to finish the exam. When the time limit is
reached, the system will automatically close.
If this is a paper exam, you have 70 minutes.

Warning: You can take the on-line exam or the paper exam. You must not take

both. Taking both is considered cheating and you will definitely receive zero.

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I understand that, if I fail to honor this agreement, I will receive a score
of ZERO for this exam and will be subject to possible disciplinary action.

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

Read the questions carefully.
Some questions have conditions and restrictions.

You are not allowed to discuss the exam with anybody.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

Three learning objectives (recursion, structure, and dynamic structure) are tested in this
exam. To pass an objective, you must receive 50% or more points in the corresponding
question.

1

Contents

1 Recursion (6 points) 2
1.1 Recursive Formula (3 points) . 3
1.2 Count “+” (3 points) . 3

2 Structure (7 points) 6

3 Dynamic Structure (7 points) 10
3.1 Mistake in the Reverse Function (4 points) 11
3.2 Mistake in the Distinct Function (3 points) 13

Learning Objective 1 (Recursion) Pass Fail

Learning Objective 2 (Structure) Pass Fail

Learning Objective 3 (Dynamic Structure) Pass Fail

Total Score:

2

1 Recursion (6 points)

For a given positive integer, we want to partition it into the sum of some positive integers,
or itself. For example, 1 to 4 can be partitioned as

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

• One way to partition 1.
• Two ways to partition 2.
• Four ways to partition 3.
• Eight ways to partition 4.

In general, there are 2n−1
ways to partition value n. You can use this fact and do not have

to prove it.

In the above examples,
• When partitioning 1, the “+” (addition) operation is not used.
• When partitioning 2, the “+” operation is used once.
• When partitioning 3, the “+” operation is used four times.
• When partitioning 4, the “+” operation is used twelve times.

1.1 Recursive Formula (3 points)

When partitioning value n (n > 4), how many times is the “+” operation used?

You must explain your answer. An answer without explanation will receive no point.

This question asks you to write a mathematical formula, not a C program. You can use the
following table to validate your formula. If your formula does not match these cases, the
formula is definitely wrong. However, matching these cases does not mean your formula is
correct. You must have a systematic way to find the formula. Do not try to find a formula
to match these values.

n 1 2 3 4 5 6 7 8
f(n) 0 1 4 12 32 80 192 448

3

1.2 Count “+” (3 points)

The following program prints the partitions. Make necessary changes so that line 35 prints
how many times is the “+” operation used for the given value. Please mark your changes
on the given program.
Hint: One correct solution changes no more than 80 characters (not 80 lines). If you write
a whole page of code, you are likely going in a wrong direction.
To keep your answer concise, your answer can be something like

Line 10: change ind = 0 to ind = 1

Line 16: change int * arr to int arr

include <stdio.h>1
include <stdlib.h>2
include <string.h>3
define MAXLENGTH 154
static void printPartition (int * arr , int len)5
{6

int ind ;7
printf ("= ");8
for (ind = 0; ind < len - 1; ind ++)9

{10
printf ("%d + " , arr [ind]);11

}12
printf ("%d \n" , arr [len - 1]);13

}14
static void partitionHelper (int value , int * arr , int ind)15
{16

if (value == 0)17
{18

printPartition (arr , ind);19
return ;20

}21
int nextVal ;22
for (nextVal = 1; nextVal <= value ; nextVal ++)23

{24
arr [ind] = nextVal ;25
partitionHelper (value - nextVal , arr , ind + 1);26

}27
}28

29
void partition (int value)30

4

{31
int count = 0;32
int arr [MAXLENGTH];33
partitionHelper (value , arr , 0);34
printf ("\"+\" is used %d times to partition %d\n", count , value);35

}36
37

int main (int argc , char * * argv)38
{39

int val ;40
for (val = 1; val <= MAXLENGTH ; val ++)41

{42
partition (val);43

}44
return EXIT_SUCCESS ;45

}46

5

2 Structure (7 points)

The program has many mistakes. Identify and correct three mistakes. Please include
the line numbers of your changes.
The correct output should be

Student: ID = 264, name = Amy

Student: ID = 2013, name = Bob

Student: ID = 1024, name = Cathy

Student: ID = 913, name = David

Hint: Please notice that the printed names are different. You need to use deep
copy.
The program must not leak memory and must not have any invalid memory access.

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3
typedef struct4
{5

int ID;6
char * name;7

} Student;8
Student * Student_construct(int i, char * n)9
{10

Student * st = malloc(sizeof(Student));11
st -> ID = i;12
st -> name = n;13
return st;14

}15
void Student_print(Student * st)16
{17

printf (" Student: ID = %d, name = %s\n", st -> ID, st -> name);18
}19
void Student_free(Student * st)20
{21

free (st);22
}23
#define NUM_STUDENT 424
int main(int argc , char * * argv)25
{26

int id[NUM_STUDENT] = {264, 2013, 1024, 913};27
char * name[NUM_STUDENT] = {"Amy", "Bob", "Cathy", "David "};28

6

int ind;29
Student * st; // array of Student pointers30
st = malloc(sizeof(Student) * NUM_STUDENT);31
for (ind = 0; ind < NUM_STUDENT; ind ++)32

{33
int currid = id[ind];34
char * currnam = name[ind];35
st[ind] = Student_construct(currid , currnam);36

}37
for (ind = 0; ind < NUM_STUDENT; ind ++)38

{39
Student_print(st[ind]);40

}41
for (ind = 0; ind < NUM_STUDENT; ind ++)42

{43
Student_free(st[ind]);44

}45
return EXIT_SUCCESS;46

}47

7

3 Dynamic Structure (7 points)

This program asks you to write two functions

Node * List_reverse(Node * head);

int List_distinct(Node * head);

Neither function is allowed to call malloc . First, this is the header file.

/*1
file: list.h2

*/3
#ifndef LIST_H4
#define LIST_H5
typedef struct listnode6
{7

struct listnode * next;8
int value;9

} Node;10
11

Node * List_insert(Node * head , int v);12
/* insert a value v to a linked list starting with head , the new node13

is in front of the list , return the new head */14
15

Node * List_search(Node * head , int v);16
/* search a value in a linked list starting with head , return the node17

whose value is v, or NULL if no such node exists */18
19

Node * List_delete(Node * head , int v);20
/* delete the node whose value is v in a linked list starting with21

head , return the head of the remaining list , or NULL if the list is22
empty */23

24
Node * List_reverse(Node * head);25

26
int List_distinct(Node * head);27

28
void List_destroy(Node * head);29
/* delete every node */30

31
void List_print(Node * head);32
/* print the values stored in the linked list , from the first (front ,33

or head) to the last (tail) node */34

8

#endif35

3.1 Mistake in the Reverse Function (4 points)

The following is an attempt to implement the reverse function. However, there are some
mistakes.

• What is the output of this program? (2 points)
• Does the program leak memory? (1 point)
• Correct the program based on the given algorithm. (1 point) Please include the
line numbers of your changes.

If a function is used but not printed here, You can assume that the function is correct.

This is the algorithm:

Reverse the links of a given list . The original first node becomes

the last node in the new list . The original last node becomes the

first node in the new list . The original list is changed (not

copied) by this function .

keep three pointers:

head is the front of the old list

oldsec is the node after the head in the old list

revhead is the front of the new (reversed) list

while (head is not NULL)

{

update oldsec to be the node after head

// remove one node from the old list and add it to the

// new list

assign revhead to head’s next

assign head to revhead (the new head of the new list)

// update head to the front of the old list

assign oldsec to head

}

return revhead

#include "list.h"1
#include <stdlib.h>2
#include <stdio.h>3
#include <time.h>4

9

Node * List_reverse(Node * head)5
{6

if (head == NULL)7
{ return NULL; }8

Node * revhead = NULL;9
while (head != NULL)10

{11
head -> next = revhead;12
revhead = head;13
head = head -> next;14

}15
return revhead;16

}17

/*1
file: main1.c2

*/3
#include "list.h"4
#include <stdlib.h>5
#include <stdio.h>6
#include <time.h>7
int main(int argc , char * argv [])8
{9

srand(time(NULL));10
Node * head = NULL; /* must initialize it to NULL */11
int iter;12
for (iter = 0; iter < 10; iter ++)13

{14
head = List_insert(head , iter);15

}16
List_print(head);17
head = List_reverse(head);18
List_print(head);19
/* delete all Nodes */20
List_destroy(head);21
return EXIT_SUCCESS;22

}23

10

3.2 Mistake in the Distinct Function (3 points)

The following is an attempt to implement the distinct function. However, there are some
mistakes.

• What is the output of this program? (1 point)
• Does this programt terminate or enter an infinite loop? (1 point)
• Correct the program based on the given algorithm. (1 point) Please include the
line numbers of your changes.

This is the algorithm

Report whether the values stored in the list are distinct.

The function returns 1 if the values are distinct.

The function returns 0 if any value is stored in two or more nodes.

If the list is empty, the function returns 1.

This function goes through every node in the list and compares

every node after this node. If two nodes have the same value, the

function returns 0. If all nodes have been checked, the function

returns 1.

#include "list.h"1
#include <stdio.h>2
int List_distinct(Node * head)3
{4

if (head == NULL)5
{6

return 1;7
}8

while (head != NULL)9
{10

Node * p = head -> next;11
while (p != NULL)12

{13
if ((head -> value) == (p -> value))14

{15
return 0;16

}17
}18

head = head -> next;19
}20

return 1;21
}22

11

/*1
file: main2.c2

*/3
#include "list.h"4
#include <stdlib.h>5
#include <stdio.h>6
#include <time.h>7
int main(int argc , char * argv [])8
{9

srand(time(NULL));10
Node * head1 = NULL; /* must initialize it to NULL */11
Node * head2 = NULL; /* must initialize it to NULL */12
int iter;13
for (iter = 0; iter < 10; iter ++)14

{15
head1 = List_insert(head1 , iter);16
head2 = List_insert(head2 , iter / 2);17

}18
List_print(head1);19
List_print(head2);20
printf ("The values in list1 are");21
if (List_distinct(head1) == 0)22

{23
printf (" not");24

}25
printf (" distinct .\n");26

27
printf ("The values in list2 are");28
if (List_distinct(head2) == 0)29

{30
printf (" not");31

}32
printf (" distinct .\n");33
/* delete all Nodes */34
List_destroy(head1);35
List_destroy(head2);36
return EXIT_SUCCESS;37

}38

12

