
ECE 462
Object-Oriented Programming

using C++ and Java

Lecture 23

Yung-Hsiang Lu
yunglu@purdue.edu

week 14 2

C++ History

• why to study history?
– Knowing the past often helps us plan for the future.
– The design decisions of one programming language

help us design better languages.
• Since C++ (1982), many new programming languages

have been developed:
– 1991 Python
– 1995 Java 1
– 1995 PHP
– 1997 OO COBOL
– ...

week 14 3

History of C++: 1979-1991
by Bjarne Stroustrup

• background
– 1977 Apple 1 & 2 (1MHz processor,

4-48KB memory, $1300-$2600)
– 1979 Intel 8088
– 1980 Seagate (then called Shugart)

5.25-in 5MB disk
– 1981 IBM PC (4.77MHz, 16-640KB

memory)
– 1983 TCP/IP

• Computers were slow and expensive.

week 14 4

C++

• design goals:
– Simula's facilities for program organization
– C's efficiency and flexibility
– for system programming

• 1979-1983 C with Classes
• 1982-1985 C++
• 1985-1988 C++ 2.0
• 1988- standardization (ISO / ANSI)
• ISO = International Organization for Standardization
• ANSI = American National Standards Institute

week 14 5

Simula

• simulator for a distributed system
• class hierarchy
• capturing type errors by compiler

– type: int, string, Student, Computer ...
– type error, for example, a Student object + 3, a Computer object

+ "hello" ...

• problem of Simula: link time too long
– run-time type checking
– variable initialization
– garbage collection, even for a program without garbage
⇒ performance too low

week 14 6

Programming Language Design

• Never attack a problem with wrong tools.
1. support for program organization: class, hierarchy,

concurrency, static type checking
2. good tools to compile files separately, to link files written

in different languages, and to produce fast programs
3. portable across different machines
• His background in OS and communication affects many

design decisions, such as model of protection and
exception handling

• A good language requires a good implementation.
Performance matters.

week 14 7

C with Classes

• new language developed to analyze UNIX kernel: analyze network
traffic and modularize kernel

⇒ develop an extension of C by adding tools
⇒ Some programming languages are developed for specific purposes

and then are generalized.
• no primitives to express concurrency, use libraries instead (different

from Java with built-in thread supports)
– built-in support: consistent with language, but may cause

unnecessary overhead to the users that do not need this feature
– libraries: more flexibility but increase the overhead in system

administration to ensure version compatibility
• C with Classes to be used anywhere C is used ⇒ efficiency

requirements eliminate built-in runtime safety checking

week 14 8

Features in C with Classes

• "philosophy": language designers should not force programmers to
use a particular style; instead, designers should provide styles,
practices, and tools to help programmers avoid well known traps ⇒
C allows low-level operations and type conversions, so does C with
Classes

• features (1980): class, derived class, public / private access,
constructor / destructor, call and return, friend class, type checking
and conversion of function arguments

• features (1981): inline, default arguments, overloading of
assignment operator

• C with Classes was implemented as pre-processor of C ⇒ portable
across machines ⇒ common approach for language design today

C with Classes pre-processor C C compiler executable

week 14 9

Design Decisions in C with Classes
• A class is a type.
• Local variables are allocated at stack, not heap ⇒ no need to call

destructor or garbage collection
• Default access control is private.
• Static type checking for function arguments and return values.
• Class declarations and function definitions can be in different files

(different from Java). Hence, class declaration can be the "interface"
(Java distinguishes interface from class)

• "new" calls constructor (not all valid C programs are valid C++
programs)

• Use-defined types (classes) are treated in the same way as the
built-in types.

• Function inlining is used to reduce the overhead of calls ⇒
discourage programmers from declaring data members as public.

week 14 10

// classX.h
class X {
public:

void foo(int, float);
};
// both a class declaration and
// interface

// classX.cpp
#include "classX.h”
void X::foo(int a, float b) {

...
}
// define the implementation of a
// member function

week 14 11

Garbage Collection in C++

• considered until 1985
• inappropriate for a language (C) already had run-time

memory management
• GC would degrade performance unacceptably

• Stroustrup stressed that there was no "grand plan" to
develop C++. Hence, the usefulness of the language
resided on the ability to attract users in Bell Lab by
solving their problems, efficiently.

week 14 12

1982 C++

• C with Classes was a "medium success"
• major features:

– virtual function
– function and operator overloading
– reference
– constant

• virtual function
– to adapt to similar but different (common base class) types
– a large if-then-else or switch-case block is undesirable
– dilemma: allow adaptability by users without allowing the change

of base classes (possibly from the library)

week 14 13

void shape::draw()
{

switch (type) {
case circle:

// draw a circle
break;

case square:
// draw a square
break;

case triangle:
// draw a triangle
break;

}
}

week 14 14

1986 C++ 2.0

• multiple inheritance, "the fundamental flaw in these arguments is
that they take multiple inheritance far too seriously... it is quite
cheap... you don't need it very often but when you do it is essential."

• type-safe linkage
• abstract class
• static member functions
• protected members
• overloading ->

• Exception handling was added later.

week 14 15

Summary

• C++ was developed to solve a specific problem: simulating
distributed systems

• It is important to choose a good language as the base and build on
top of the base; this can obtain immediate tool support.

• Features do not have to be added at once. Most features are added
out of necessity, as the basic functionalities are available.

• Separate compilation and linking is critical for developing large-scale
programs.

• Performance is essential. Many design decisions are based on the
impact of performance.

week 14 16

Brief History of Java 1995-

• started in 1991 and announced in 1995
• Java started as a technology for entertainment "set-top box" to

create a language that can run on small portable systems, not
intended for system programming (as C++) ... but cable companies
were unwilling to support

• The focus then switched to support Internet for processor
(hardware) independent and operating-system independent (to be
further discussed later)

• need: execute programs from remote machines through the Internet
⇒ A new language is more likely to succeed to solve a new problem.

Solving an old problem is harder because of the existing programs
and the infrastructures.

• 1994, a "better browser"

week 14 17

Then ... and ... Now

• interactive browser:
– With Java, users can interact with the browser, beyond browse,

scroll, and click.
– Sun Microsystem, as a primarily hardware company, developed

Java to create the demand for high-performance networking
equipment and computers.

– 1995/03/23 San Jose Mercury News headline
– Security is crucial since malicious code can easily propagate

through the Internet (different goals from C++)
• widely used on

– 4.5B devices
– 1.5B phones
– printer, webcam, game, car ...

week 14 18

Java: Sun vs. Microsoft

• 2002, Sun filed a lawsuit against Microsoft for violating the license
agreement about Java

• Java was considered a threat to Microsoft's control of the operating
system market.

• Sun accused that Microsoft modified Java in Windows and thus
made it incompatible with other platform running Java.

• 2004, the two companies settled

• (background)
– 1998 US antitrust against Microsoft, settled on 2001/11/02
– 2003 European Union issued penalty to Microsoft

week 14 19

ObjectN/Aglobal base class

garbage collectiondestructormemory management

mandatoryoptionalobject-oriented

interfaceyesmultiple inheritance

exceptionN/Arun-time array index
checking

Internetpersonal computer
(to a lesser extent)

growth force

securityefficiencypriority

N/ACbase language

embedded system
Internet

system programmingtarget environment

Sun MicrosystemAT&T Bell Laborganization

JavaC++

week 14 20

N/Ayesoperator overloading

N/Ayesdefault value of
function parameters

built-in AWT and SWINGexternalgraphics library

yesyesfunction overloading

yesyesexception handling

N/Ayes (.h and .cpp)separate interface
and implementation

implicitexplicitvirtual function

value (primitive types),
reference

value (primitive types),
pointer, reference

parameter passing

N/Ayesfriend function / class

built-in, threadexternal libraryconcurrency

JavaC++

week 14 21

Lessons Learned

• A successful language needs a clearly defined target. Creating a
new language to replace an existing one is unlikely to succeed.

• Prioritize the requirements: efficiency for C++ and platform neutral
for Java

• Tools (compiler, linker, debugger, runtime environment ...) and
libraries (graphics, thread ...) are crucial, probably more important
than the "elegance" of a language.

• Performance cannot be ignored. Any new language will be
compared with C in terms of performance.

• Keep the non-essential portions of the new language the same as a
popular existing language. Do not confuse users.

• Be aware of non-technical forces (such as legal issues)

