
ECE 462
Object-Oriented Programming

using C++ and Java

Lecture 21

Yung-Hsiang Lu
yunglu@purdue.edu

week 12 2

Testing Strategy

• Testing is one, not the only one, step to ensure quality.
• Before writing code, think about how to test it.
• Do not be surprised that you write more code for testing

than for the project.
• Danger of using testing to ensure quality: you usually

test what you suspect. The program usually breaks at
places where you are confident.

• Sometimes, reading code line-by-line can find and fix
problems faster than writing testing code, especially for
multi-thread programs.

week 12 3

Design and Testing

• Importance of unit testing: well-designed software should
allow only limited visibility (encapsulation) for better
consistency. Hence, testing from outside is difficult.

• Build software in layers. A lower layer should be fully
tested before building a higher layer.

system testingsystem engineering

validation testrequirements

integration testdesign

unit testcode familiar to most of you

often the hardest

week 12 4

Test Coverage

• How much code is exercised in a test? How many
possible paths are traversed?

• Many tools exist for reporting code coverage.
• Low coverage: not fully tested ⇒ bad test
• High coverage: can hardly test each possible path

⇒ quality unclear
• Testing discover many problems? good or bad?
• "dead code": code that is impossible to reach, usually

indicates design or coding errors
return 0;
x ++;

}

week 12 5

Execution Path

C: code fragment

C1

C4C3

C6

C7

C5

C2

C1

C4C3

C6

C7

C5

C2

C1

C4C3

C6

C7

C5

C2

Every node has been visited
(100% test coverage) but
C2→C6 has not been testedC6

C2

week 12 6

Quantify Testing Quality

• coverage: (% code and % paths) of the test
• efficiency: evenly distribute? time to cover 99%?
• progression: % new code tested
• discovery rate: % bugs found for every line of test code
• configurability: selections of features to test
• ratio: how much testing code needed to test actual code
• expandability: amount of efforts needed to test new

features
• degree of automation: can it be fully automated, semi-

automated, or complete manual?

week 12 7

Testing Steps

• unit testing, integration testing, regression
• unit testing:

– individual components
– often conducted by the developer
– often using dedicated testing code to create input

data, exercise the components
– often traced by single steps
– check boundary conditions and error handling
– check interface correctness and responses to

incorrect inputs

week 12 8

Unit Testing

– examine the performance
– should be performed before "cvs commit"
– should be put into the repository
– should be configurable for related components
– require careful planning in advance
– driver: code to call the component, stub: code to be

called by the component. both are overhead

driver

test case 1

test case 2

test case 3

test case 4

component

stub
stub

stub
stub

stub

week 12 9

Integration Testing

• Interface incompatibility is often the reason software breaks.
incompatibility ≠ compiler error

• types of interface errors, even passing compilation, e.g.
– wrong types (object of derived class or base class)
– wrong assumptions, for example

• who is responsible for allocating or releasing memory
• who may modify the data, especially global variables
• sorted or nearly sorted? wrong result or wasting time

– wrong timing assumption for real-time software
• incremental integration: add one component (e.g. class) each time
• may still use drivers and stubs (how do you know they are correct?)

week 12 10

Top-Down Integration

• using control flow to determine the integration order
• starting from the main component ("main" in C/C++) as

the driver
• integrate callees (replace stubs) of the main component
• depth-first integration: C1, C2, C5, C7
• breadth-first integration: C1, C2, C3, C4
• after one successful test, replace

a stub by the real component
• regression test (later) to

ensure tested components
still work

C1

C4C3

C6

C7

C5

C2

week 12 11

Challenges in Top-Down Testing

• control flow and call graph are not
downward only or acyclic

• many functionalities cannot be tested
before the leaf components are built,
e.g. C1 needs the data (or
objects) generated in C7
to test C3

• depth-first or breath-first only
may not represent normal
execution paths

C1

C4C3

C6

C7

C5

C2

week 12 12

Bottom-Up Integration

1. start from individual components (such as classes)
2. put several components together, use a driver to test

them
3. replace the driver by a real component
4. repeat step 2-3
• difficulties:

– which components to integrate first? They must
have a common driver.

– control may not be upward only or acyclic
– required data (or objects) may be generated from a

component that has not been integrated

week 12 13

Regression Testing

• re-test what has been tested after new components are
integrated into the project

• (same) test after errors are corrected
• expandable as more components are added
• configurable so that new components can be exercised

more
• should be automated as much as possible (consider

using cron jobs)
• Most important / frequently used features should be test

more thoroughly.

week 12 14

Test Documentation

• Testing should be planned and documented.
– test plan: what to test, when to test, who runs the test,

how to run the test, what data to use …
– testing with integration: how components are

integrated, regression testing procedure
– procedure to test: manual, automated, or semi-

automated? conditions, tools, special hardware …
– test result analysis: what to expect, how to diagnose
– test result management: providing a trace of

integration and testing
– re-test procedure after correction

week 12 15

Hypothesis-Test Debugging

• Most software developers take "hypothesis-testing"
approach for debugging:
– guess what is the cause
– modify the code
– run some tests
– analyze results, if not fixed, guess another place

document
case closedanalyze results

correction identify cause

regression

testing

new

bug fixed?

yes

no

usually the hardest part

week 12 16

Time-Sensitive or Massive Data

• Single-step code is not always the best way to debug.
• Some programs cannot be single-stepped:

– time-sensitive, interacting with the physical world. It does not
wait for the program.

– massive amount of data, too many steps. How do you single-
step an image with 3 million pixels?

• Detect error conditions before proceeding. Always check the return
value of a system or library call, such as connect, read, write,
malloc, fork …

• Create increasingly complex and realistic testing data: smaller
images, simpler images, single color, checkerboard …

week 12 17

Time-Sensitive or Massive Data

• Detect and handle errors before they propagate.
• Generate execution logs for post-execution analysis. Be

careful about the impact on timing.
• controversy of "assert": assert (something must be true);

assert (x > 0);
Program stops immediately if the condition fails
⇒ errors do not propagate.
⇒ users cannot recover anything, especially lost data.

week 12 18

Problem in Testing OOP

• main challenge in most tests: very large
space for possible execution path

• Each "if" represents a branch of execution.
Can you test all possible paths of execution?

• implicit branches from polymorphism
BaseClass obj = new BaseClass;
obj.method(); // BaseClass'
obj = new DerivedClass;
obj.method(); // DerivedClass'

• state-dependent behavior
• inheritance
• abstract class

ISBM 978-0-471-4593-6

• polymorphism
• exception handling
• concurrency
• encapsulation

week 12 19

Testing OOP

• develop use cases to ensure the intended functionalities are correct
• create test cases based on the sequence diagrams in the design
• traverse all states an object may have
• identify the possible messages between classes
• intraclass testing (unit test)

– each class (except abstract) must be instantiated (i.e. create an
object)

– invoke polymorphic calls
– explicitly throw exceptions to trigger the handling code

• interclass testing
– test class hierarchies incrementally
– use layered approach

week 12 20

Layered Structure

• Structure the program so that each file can be assigned
a unique layer number.

• Layer 0: files from language, such as iostream
• Layer 1: library files, such as Qt's classes
• Layer 2: common files used in multiple projects in your

organization
• Layer 3: stable files used for months
• Layer 4: recently developed and test files
• Layer 5: unstable files
• Layer n: depends on files in layer 0, 1, 2, …, n-1

distinction
not precise

week 12 21

File Layers

A file is assigned layer n if it depends on only
files in layer 0, 1, 2, …, n-1

iostream string vectorlayer 0

Qthreadlayer 1

Studentlayer 2 Teacher

Teaching Assistantlayer 3

week 12 22

Why to Layer Files / Classes

• A file with a lower layer number should be more stable
and have a higher degree of correctness

• Strictly layered structure allow unit testing a recently
developed module in the program

• Layering indicates the precedence of development. If a
module is a foundation for some other modules, this
module should be placed (physically) in a file that has a
lower layer number.

• Cyclic dependence often suggests flaws in logical
design.

A
B

C

week 12 23

Texture Mapping
(wrap an image to a curve surface)

week 12 24

Texture Mapping

give the impression of the surface properties, usually on
a non-rectangular and 3D surface

week 12 25

Rendering Surface

• Theoretically, it is possible to render the surface, for example of
grass, by
1. modeling each object using triangles
2. calculating the lighting and shading
3. eliminate occluded pixels based on depth

• In reality, this approach takes too long.
• procedure: from a pixel's location, look up (map) the pixel from the

texture

texture

week 12 26

Pattern Image

I(u,v)

Target

P(x,y)

• Find a function f such that f: texel (u,v) → pixel (x,y).
• It is usually more efficient to find g: (x,y) → (u,v). What to

do if u or v is not an integer?

week 12 27

Foundation of Texturing

U

V

O

Px

y

x U PO

y V PO

= ⋅

= ⋅

target
(pixel)

camera

W

P

wz = d

pz

wx px

dW P
pz

=

week 12 28

Let N be the normal vector for the surface.

N PO 0

N (O P) 0

N O N P

⋅ =

⋅ − =

⋅ = ⋅ pzN O N W
d

⋅ = ⋅
pz N O
d N W

⋅
=

⋅

dW P
pz

=

N OP W
N W
⋅

=
⋅

N Ox U (W O)
N W
N Oy V (W O)
N W

⋅
= ⋅ −

⋅
⋅

= ⋅ −
⋅

pzP W
d

=

U

V

O

Px

y

week 12 29

Simple Examples

• linear texturing

• square to cylinder

x au bv c
y du ev f
= + +
= + +

x r cos(2 u)
y r sin(2 u)cos(2 v)
z r sin(2 u)sin(2 v)

= π
= π π
= π π

week 12 30

Steps for Texturing in Java 3D

• prepare texture images
– Java3D requires that an image size to be a power of 2 (2, 4, 8,

16 ...) for efficiency
– accepted format: JPEG and GIF

• load the texture
• set the texture in Appearance bundle, create a geometric

shape as the target for texture
• specify TextureCoordinate of Geometry

week 12 31

/** * SimpleTextureSpinApp creates a single plane with texture mapping. */
public class SimpleTextureSpinApp extends Applet {

BranchGroup createScene() {
BranchGroup objRoot = new BranchGroup();
Transform3D transform = new Transform3D();
QuadArray plane = new QuadArray(4, GeometryArray.COORDINATES

| GeometryArray.TEXTURE_COORDINATE_2);
Point3f p = new Point3f(-1.0f, 1.0f, 0.0f);
plane.setCoordinate(0, p);
p.set(-1.0f, -1.0f, 0.0f);
plane.setCoordinate(1, p);
p.set(1.0f, -1.0f, 0.0f);
plane.setCoordinate(2, p);
p.set(1.0f, 1.0f, 0.0f);
plane.setCoordinate(3, p);
TexCoord2f q = new TexCoord2f(0.0f, 1.0f);
plane.setTextureCoordinate(0, 0, q);

week 12 32

q.set(0.0f, 0.0f);
plane.setTextureCoordinate(0, 1, q);
q.set(1.0f, 0.0f);
plane.setTextureCoordinate(0, 2, q);
q.set(1.0f, 1.0f);
plane.setTextureCoordinate(0, 3, q);
Appearance appear = new Appearance();
String filename = "stripe.gif";
TextureLoader loader = new TextureLoader(filename, this);
ImageComponent2D image = loader.getImage();
if(image == null) {

System.out.println("load failed for texture: "+filename);
}
// can't use parameterless constuctor
Texture2D texture = new Texture2D(Texture.BASE_LEVEL,

Texture.RGBA, image.getWidth(), image.getHeight());
texture.setImage(0, image);
appear.setTexture(texture);

week 12 33

appear.setTransparencyAttributes(
new TransparencyAttributes(TransparencyAttributes.FASTEST, 0.1f));

Shape3D planeObj = new Shape3D(plane, appear);
// rotate object has composited transformation matrix
Transform3D rotate = new Transform3D();
Transform3D tempRotate = new Transform3D();
rotate.rotX(Math.PI/4.0d);
tempRotate.rotY(Math.PI/5.0d);
rotate.mul(tempRotate);
TransformGroup objRotate = new TransformGroup(rotate);
// Create the transform group node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at runtime. Add it to the
// root of the subgraph.
TransformGroup objSpin = new TransformGroup();
objSpin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(objRotate);
objRotate.addChild(objSpin);

week 12 34

// Create a simple shape leaf node, add it to the scene graph.
// ColorCube is a Convenience Utility class
objSpin.addChild(planeObj);
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(-1, 4000);
RotationInterpolator rotator =
new RotationInterpolator(rotationAlpha, objSpin, yAxis,

0.0f, (float) Math.PI*2.0f);
// a bounding sphere specifies a region a behavior is active
// create a sphere centered at the origin with radius of 1
BoundingSphere bounds = new BoundingSphere();
rotator.setSchedulingBounds(bounds);
objSpin.addChild(rotator);
Background background = new Background();
background.setColor(1.0f, 1.0f, 1.0f);
background.setApplicationBounds(new BoundingSphere());
objRoot.addChild(background);

week 12 35

return objRoot;
}
public SimpleTextureSpinApp (){
setLayout(new BorderLayout());
GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration();
Canvas3D canvas3D = new Canvas3D(config);
add("Center", canvas3D);
canvas3D.setStereoEnable(false);
SimpleUniverse u = new SimpleUniverse(canvas3D);
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
u.getViewingPlatform().setNominalViewingTransform();
u.addBranchGraph(createScene());

}
public static void main(String argv[])
{
System.out.print("SimpleTextureSpinApp.java \n- ");

week 12 36

System.out.println("The simpliest example of using texture mapping.\n");
System.out.println("This is a simple example progam from The Java 3D API
Tutorial.");

System.out.println("The Java 3D Tutorial is available on the web at:");
System.out.println("http://java.sun.com/products/java-media/3D/collateral ");
new MainFrame(new SimpleTextureSpinApp(), 256, 256);

}
}

