
ECE 462
Object-Oriented Programming

using C++ and Java

Lecture 5

Yung-Hsiang Lu
yunglu@purdue.edu



week 3 2

Review of Lab 2

• Every derived class of JComponent supports 
paintComponent. In general, this function should be 
overridden in the derived class (as we did in lab 2)

• getContentPane() ⇒ return a container



week 3 3

• getContentPane().add(jDisplay, BorderLayout.SOUTH);

• The function requires a Component object as the first parameter.
jDisplay is an object from a class that is derived from Component; 
hence, jDisplay is a valid parameter 

⇒ if an object of class X is expected as a parameter of a function, an 
object from a class derived from X is also a valid parameter. 



week 3 4

func1(Shape sobj) { ... }
Shape obj1 = new Shape();
Triangle obj2 = new Triangle();
func1(obj1); // valid
func1(obj2); // valid

func2(Triangle tobj) { ... } 
Shape obj1 = new Shape();
Triangle obj2 = new Triangle();
func2(obj1); // invalid
func2(obj2); // valid

• A Student object is also a Human object. If a Human object is 
expected, it is valid to provide a Student object.

• Not all Human objects are Student objects. If a Student object is 
expected, it is invalid to provide a Human object.

Shape

Triangle

Human

Student



week 3 5

• Whenever a component object needs to be repainted, the 
paintComponent(Graphics gfx) function is called.

• If it overridden in a derived class (for example, ShapeDisplay), the 
one in the derived class is called.

• This is an example of polymorphism.
– Functions of the same name, the same return type, and the 

same parameter list.
– Functions are implemented in derived classes.

• In a window, there may be many objects of different classes: 
buttons, menus, textfields, panels ... These objects are added to the 
window (e.g. in a list).

• When the window needs to be redrawn (e.g. restore from 
minimized), the window “asks” (i.e. send a message) to each object 
and the object decides how to redraw itself.



week 3 6

class Container {
public void add (A aobj);

}
B bobj = new B ...
C cobj = new C ...
D dobj = new D ...
E eobj = new E ...
F fobj = new F ...
cont.add(bobj);
cont.add(cobj);
cont.add(dobj);
cont.add(eobj);
cont.add(fobj);
for each object x in the container object cont {

x.func(...); // will call func of the respective class
}

A

CB

D

E

F

class A {
public void func(...)

}



week 3 7

Inheritance is a Contract

• A derived class has all the properties of the base class, 
including attributes and methods.

• A virtual function overrides the implementation of the 
method but the derived class still provides the method 
(respond to the message)

• If one class does not have all the properties of another 
class, the first should not be a derived class.

• If you are not sure, do not create a derived class.



week 3 8

Class SortedList

A sorted list is a class in which elements are sorted. 

class SortedList {
Element findNext(Element x); 

// return the smallest element that is larger than x
void insert(Element x); 

// insert x so that x is between the largest element that
// is smaller than x and the smallest element that is larger x

void remove(Element x); // remove x
}

4 7 11 19 23

15

insert



week 3 9

Class List

A list is a class in which elements can be inserted at any 
location.

class List {
Element findNext(Element x); // return the element after x
void insertNext(Element x, Element y); // insert y after x
void insertBefore(Element x, Element y); // insert y before x
void insertHead(Element x); // insert x as the first element
void insertTail(Element x); // insert x as the last element

}

4 17 1 39 13

15

insertNext(1, 15)



week 3 10

Self Test

What is the relationship between SortedList and List? 

A. SortedList: base class; List: derived class, “is a”
B. List: base class; SortedList: derived class, “is a”
C. no relationship
D. List should have ("has a") SortedList as an attribute
E. SortedList should have ("has a") List as an attribute



week 3 11

Self Test

What is the relationship between SortedList and List? 

A. SortedList: base class; List: derived class, “is a”
B. List: base class; SortedList: derived class, “is a”
C. no relationship
D. List should have ("has a") SortedList as an attribute
E. SortedList should have ("has a") List as an attribute



week 3 12

SortedList uses List?

class SortedList {
List * mylist;
void insert(Element x) { 

Element * aheadx = mylist -> findHead();
while (x > aheadx) { aheadx = mylist -> findNext (aheadx); }
mylist -> insertBefore(aheadx, x);

}
}

Now, what is your answer?

4 7 11 19 23

15

insert



week 3 13

“Has a” as Encapsulation

• Does SortedList have a List? i.e. SortedList uses List to maintain the 
order of elements by inserting at the right location? Maybe. Maybe 
not.

• SortedList does not have to use List. It may use

– array
– binary search tree
– priority queue
– list
– … // can be changed without breaking your code

• You don’t have to know what is inside SortedList. You only need to 
know its interface ⇒ encapsulation



week 3 14

• Encapsulation and inheritance are the foundation of 
code reuse. 

• Encapsulation: You can use classes without knowing 
how they are implemented. In fact, the implementation 
may change without breaking your code.

• Inheritance: You can use the attributes and methods 
already declared, defined, or implemented in the class 
hierarchy.

• Do not allow the visibility of attributes, methods, or to 
create new classes, if you have doubt. Encapsulation is 
more likely to keep your code working. 



week 3 15

General Principle of Inheritance

• identify the objects' behavior
• extract common behavior and create the base class
• provide specialized behavior in the derived class
• base class: more general, fewer attributes
⇒Since the interface of SortedList and the interface of List 

do not have “superset” relationship, they should not
form a class hierarchy.

• Do not create too many classes. If you can express the 
properties of an object by attributes, do not create new 
classes. For example, Human, Male, Female, Boy, Girl, 
Man, Woman ... They can be expressed by two 
attributes “gender” and “age”



week 3 16

Abstract Class

• Sometimes, it makes no sense to create an object of a 
class (called “instantiation”). It makes sense to create 
objects of that class’ derived classes. For example, no 
object for Shape.

• Why to create a class without instantiation?
– to provide a common interface for derived classes, for 

example, getArea
– to provide common attributes, for example, line style 

and thickness



Lab 3: Creating Multi-File C++
using Managed Project in eclipse


