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Abstract—Resistive  switching random access memory
(RRAM) is a leading candidate for next-generation nonvolatile
and storage-class memories and monolithic integration of logic
with memory interleaved in multiple layers. To meet the
increasing need of device-circuit-system co-design and
optimization for applications from digital memory systems to
brain-inspired computing systems, a SPICE model of RRAM that
can reproduce essential device physics in a circuit simulation
environment is required. In this work, we develop an RRAM
SPICE model that can capture all the essential device
characteristics such as stochastic switching behaviors, multi-level
cell, switching voltage variations, and resistance distributions.
The model is verified and calibrated by a variety of electrical
measurements on ~10 nm RRAMs. The model is applied to
explore a wide range of applications including: 1) variation-
aware design; 2) reliability-emphasized design; 3) speed-power
assessment; 4) array architecture optimization; and 5)
neuromorphic computing. This experimentally verified design
tool not only enables system design that includes the complete
suite of RRAM device features, but also provides solutions for
system optimization that capitalize on device/circuit interaction.

Keywords—emerging memory, resistive switching memory,
SPICE model, design tool, variability, reliability.

I. INTRODUCTION

Emerging memory technologies such as phase change
memory (PCM), spin-transfer torque magnetic random access
memory (STT-MRAM) and resistive switching random access
memory (RRAM) have attracted great research interests in
recent years [1]-[3]. These novel memory technologies
promises to bring a revolution to the memory hierarchy in
computer  architecture [2]. Besides, brain-inspired
neuromorphic  computing  beyond the von-Neumann
architecture may also benefit from the capabilities of emerging
non-volatile memories. RRAM is a leading candidate for these
applications due to its low cost, low operating power, fast
switching speed, demonstrated scalability and 3D integration
capability [1]-[4]. Much effort have been paid to understand
the underlying physics of switching behaviors and operating
mechanisms of RRAM devices [5]-[8]. Based on these studies,
many features such as multi-level cell (MLC), wide
distributions of switching parameters, and disturb effects have
been revealed to describe the complete characteristics of
RRAM. Meanwhile, the system design community is
developing system-level mathematical models [9]-[11] to
assess the benefits of systems that uses RRAM. Although both
fields have made substantial progress, in order to bring realism
to the analyses, it is necessary to bridge the gap between deep
device physics and in-depth device-circuit-subsystem co-
design. A variety of RRAM compact models have been

TABLEI
MODEL FEATURE REQUIREMENTS FOR DESIGN EXPLORATIONS
Dynamic Multi-level Intrinsic Disturb
switching states variations effects
Memory array Required Required Required Required
operation
MLC . .
design Required Required
Varlanor‘l Required Required
-aware design
Reliability Required Required
assessment
Speed-power Required Required
assessment
Arc.thectpre Required Required
optimization
Neuromomhlc Required Required Required
computing

developed either in a phenomenological manner or based on
physics [12]-[17]. However, some models are not SPICE-
compatible, and therefore cannot be implemented in industry-
standard simulators such as HSPICE. And some may not
include part of the essential device features such as intrinsic
variations and fluctuations. The loss of memory cell
‘information’ may lead to inaccurate assessment of system
performance and reliability. Thus, a SPICE compact model that
includes all the essential features for accurate system design is
needed. In this work, we use Verilog-A to develop a physics-
based and experimentally verified RRAM SPICE model
covering all the major features from observations (Table I).
The model includes both MLC switching behaviors and
intrinsic  device variations. Then, we demonstrate the
application of this model for a wide range of applications from
variation-aware design to speed-power assessment and
reliability-emphasized  design, from array architecture
optimization to neuromorphic computing.

II. REQUIREMENTS FOR RRAM MODELS

RRAM is an MIM-structure device that can be switched
between low resistance state (LRS) and high resistance state
(HRS) under external voltage control. For bipolar RRAM
devices, the switching voltage (SV) for the SET process (from
HRS to LRS) is positive and SV for RESET (from LRS to
HRS) is negative. Compact models [12]-[17] serve as the
interface between device properties and RRAM system design.
The requirements of model features for various design targets
are summarized in Table I. To enable model implementation in
circuit simulators, SPICE compatibility is essential. In the
contrast to the simplified mathematical models, device compact
models should be able to reproduce the inherent switching
behaviors. To capture transient responses during array
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TABLE

1I

COMPARISON OF RRAM COMPACT MODELS

SPICE Filament HRS LRS SV MLC Current Parasitic Disturb
Compatibility Dimension Variations | Variations Statistics Design Fluctuations | /Overshoot Effects
Sheridan 11 C tibl 1D Not Not Not Partially Not Not Not
[12] ompatible ) included included included supported included included included
Ielmini 11 Not D Not Not Not S rted Not Partially Not
[13] compatible included included included uppo included included included
Degraeve 12 Not Not Not Not Not Not
[14] compatible D included included included Supported included Included included
Huang 13 Not Not Not Not Not
[15] compatible D included included included Supported included Included Included
Jiang 14 . Not Partially Not Partially
[16] Compatible 1-D Included Included included supported Included included included
This work Compatible 2-D Included Included Included Supported Included Included Included
LRS RESET-HRS SET-first step SET-second step
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Fig. 1. Schematic of modeling conductive filament (CF) evolution processes
during SET and RESET operations on RRAM cell. Key physical variables are
gap distance (g) and CF radius (r).

operations, current fluctuations and parasitic effects should be
included in the model. For MLC design, multi-level states with
statistical distributions should be supported. For variation-
aware design, a complete framework for the statistical
distributions of LRS resistance (R;zs), HRS resistance (Ryzs)
and SV for SET/RESET is required. A model will not be able
to reflect realistic conditions without including switching
parameter distributions. For reliability assessment, the
stochastic switching behavior and read/write disturb effects on
unselected memory cells for a memory array should be
supported to assess the status of memory cells during long-term
programming. Speed-power assessment of RRAM circuits can
be performed by directly simulating and monitoring array
operations. At the system level, array architecture optimization
and neuromorphic system design also require some key model
features such as MLC, intrinsic variations, and stochastic
switching. Aimed at supporting a broad portfolio of design
explorations for RRAM technology, we develop a SPICE-
compatible compact model of RRAM covering all the critical
features [5]-[8], [12]-[14]. A comparison of RRAM compact
models in terms of supported features is given in Table I1.

III. SPICE MODEL OF RRAM
A. Model Core: Filament Evolution

It has been widely accepted that for metal-oxide RRAM,
resistive switching is due to the formation and rupture of
conductive filament (CF) [1], [5], [15]. The switching
characteristics are strongly correlated with CF geometry, which
is determined by the generation and recombination of oxygen
vacancies (Vo) in the oxide layer. Based on this physical
picture, we model the RRAM switching behavior as the CF
evolution processes during SET and RESET, as shown in Fig.
1. The key control variables are the tunneling gap distance (g)
and the CF radius (r), which describe a 2-D filament in the
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Fig. 2. (a) Schematic of conduction paths in RRAM. (b) Parasitic elements of
the MIM-structure RRAM.

oxide switching layer. During the SET process, the growth

rates of CF in length and in radius are described by the two-

step process [15]:

dg | dt = af exp(~(E, - ZeE) | k,T) (1)

dr/dt = (Ar+ A ) 2r) fexp(~(E, - @, ZeE) [ k,T) (2)

where a is the adjacent V distance, f'is the vibration frequency,
E, is the activation energy of Vo, a, is an enhancement factor,
E is the electrical filed, T is the temperature and kg is the
Boltzmann constant. During the RESET process, the rupture
rate of CF is determined by the slower one of two physical
processes, namely, O” release from electrode and Vo/O>
recombination [15]:

dg/dt =af exp(~(E -yZeV)/k,T) 3)

dg/dt = af exp(~E, / k,T )sinh (e, ZeE / k,T) 4)
where E; and E, are electrode/oxide interface barrier and O*
hopping barrier, respectively. y and o, are enhancement factors.
During the switching, the local CF temperature plays an
important role [6] to accelerate the temperature-dependent
processes incorporated in equations (1)-(4). Joule-heating alters
the local CF temperature and is described by:

T=T+1VR, 5)
where T, is the ambient temperature and Ry, is the thermal
resistance of the CF.

The conduction of RRAM cell is modeled based on two
dominant mechanisms [7]: hopping current paths and metallic
conduction paths, as shown in Fig. 2(a). The I-V characteristics
associated with g and r can be calculated as:

1, =1(2/4)exp(-g/g, )sinn(V, /V,) (6

Lo =7V, 14p(g, -g) ™)

Next, we take into account the parasitic effects originating
from electrode capacitance (C,), contact resistance (R¢) and
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leakage paths (R,) in the oxide layer. The simplified parasitic
model containing the resistive switching component is shown
in Fig. 2(b). Thus, transient responses can be captured.

B. Modeling Intrinsic Variability

Variability is one of the intrinsic characteristics of RRAM
[5], [18]. As compared to other emerging memories, RRAM
exhibits wide statistical distributions of the switching
parameters such as HRS resistance (Ryrs), LRS resistance (Rygs)
and SV [5]. These device-level variations have a significant
impact on system performance and reliability, and thus should
be properly treated in the device model. Recent studies reveal
that variations of R;pg and Rypg result from the fluctuations in
the CF radius [18] and the tunneling gap distance [5],
respectively. In addition, it is found that the stochastic nature of
the ion migration barriers may lead to the variations of
switching voltage [18]. Based on these physical pictures, the
variations of g and r are incorporated by the following relations:

g = [(dg/di+5gx x(t))dt ®)
r =f(dr /dt +0rx x(t))dt )

where y(?) is zero-mean Gaussian sequence with a root mean
square of unity. J, and J, represent variation amplitude to be
determined based on device measurement data. Finally, energy
barrier variations are included using a Monte-Carlo approach
to reproduce cycle-to-cycle SV variations during SET/RESET:

g=S(E +6,) (10)
g=R(E +0,,E +0,) (11)

C. Experimental Verification and Calibration

TiN/HfO,/TiO4/Pt bi-layer RRAM devices of ~10 nm
feature sizes were fabricated and the detailed fabrication
process was reported in [19]. To verify and calibrate the
developed model, electrical measurements are performed using
the Agilent 4156C parameter analyzer. The model is
implemented in HSPICE simulations for comparison. Fig. 3
shows measured and simulated I-V characteristics of RRAM.
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Fig. 5. (a) Measured and (b) simulated complete MLC characteristics with
resistance distributions due to cycle-to-cycle variations.
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Fig. 6. (a) Measured and (b) simulated switching voltage distributions.
The model can reproduce typical ‘abrupt SET’ and ‘gradual
RESET’ behaviors well. The model assumes a lateral CF
growth process during SET. To verify this assumption, the
dependency of R;gs on compliance current during SET is
measured and compared with the simulation results, as shown
in Fig. 4. The use of a larger compliance current leads to lower
R, s after SET, which implies that a wider or ‘stronger’ CF is
formed, so consequently a lower resistance is read out. The
agreement between experimental data and simulation over 4
orders of magnitude validates the 2-D filament assumption in
our SPICE model. A large set of statistical experiments (100
cycles for each condition) are conducted to calibrate the model
to reproduce the intrinsic variability of RRAM. As shown in
Fig. 5(a), varying the maximum voltage during RESET leads
to different level of Ryps, and different SER compliance
currents result in different levels of R;zs, all accompanied by
resistance  variations. The model reproduces MLC
characteristics with variations since the CF geometry
variability is incorporated into the model. The simulated
statistical distributions shown in Fig. 5(b) agree with the
experimental data well. The model supports complete MLC
RRAM design and does not ignore the intrinsic parameter
distributions. The stochastic properties of SV during
SET/RESET can be also reproduced, as shown in Fig. 6(a) and
Fig. 6(b). The fluctuations in energy barriers lead to variation
of the SET/RESET voltages at different cycles, resulting in a
normal distributions for the SV. Hence, this model not only
captures inherent switching behaviors, but also reproduces the
statistical properties correlated with intrinsic variability of
RRAM. Other essential features such as overshoot
phenomenon (due to parasitic capacitance) and read/write
disturb effects (sub-threshold switching) are also supported by
this model. The details will be described elsewhere.

IV. DESIGN CASE STUDIES

After setting up the experimentally verified RRAM SPICE
model, we employ the model for the study of crossbar arrays
(with and without selectors) and 3D vertical RRAM (VRRAM)
arrays [20]. We generate full-size array structures with
interconnect wire resistance (R,;.) and wire capacitance (C;.)
at the 22 nm node (ITRS2013) for HSPICE simulations. Fig. 7
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(b) Architecture of sub-circuit model for 3D VRRAM in HSPICE simulations.
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Fig. 9. Transient current responses during random-access programing of a 16-
kb 3D VRRAM array. The cell location is indicated by (x,y,z) in the legend.
shows the diagram of crossbar RRAM arrays formed of word
lines (WL), bit lines (BL) and RRAM cells at cross-points. A
worst-case scenario is considered where the selected cell is
located at the farthest corner in the array. The write schemes
follow the widely used ‘V/2’ and ‘V/3’ schemes [9], and
voltage-driver sensing scheme is used for read operation [9].
The model is also employed in 3D VRRAM simulations. Fig.
8(a) shows the schematic of 3D VRRAM array [20]. We use
the sub-circuit model [20] to construct the full-size 3D
VRRAM arrays in HSPICE simulations, where the plane WLs
and vertical pillars are modeled as resistor network shown in
Fig. 8(b). Plane-to-plane, pillar-to-pillar and RRAM capacitors
are all considered in array structure. An experimentally

validated write/read scheme is used in the simulations [21].

A. Variation-Aware Design

First, we present the application of the developed model in
variation-aware design, which includes the impact of intrinsic
variability of RRAM devices for circuit design and assessment.
Random-access write operation is simulated in a 16-kb (32SLs
x 32BLs x 16 layers) 3D VRRAM array, as shown in Fig. 9.
Pulse operation (4 V, 50-ns width, 5-ns pulse edge) is used to
program RRAM cells located at different address in the 16-kb
memory block. Cells at different address suffer from different
RC delay. And the variability of device filament growth during
the nanoseconds-long programming time window can lead to
significant RESET current fluctuations. Simplified models may
not be able to monitor the dynamic status of RRAM cells
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Fig. 10. Stochastic programming on the worst-case cell in a 16-kb crossbar
RRAM array.
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Fig. 12. Statistical distributions of (a) write access voltage and (b) read margin
with array data pattern randomness. Inset of (b): For the worst cases of reading
LRS and HRS, the unselected cells are HRS and LRS, respectively.

during programming. To design RRAM arrays with better
stability, current fluctuations [22] during write operations must
be taken into consideration.

We then focus on the stochastic programming behavior of
one single cell. A 16-kb (128WLs x 128BLs) crossbar RRAM
array is simulated, and the 20-cycle SET operations on the
worst-case cell are shown in Fig. 10. It is noticed that the SET
time varies from cycle to cycle. Hence, for fast-speed operation
of RRAM circuits, the stochastic properties of switching
voltages should be carefully considered to leave sufficient
margin for successful write operations. It is known that
crossbar RRAM arrays suffer from sneak path problems.
Considering device resistance variations, a random data pattern
is generated as shown in Fig. 11, which is closer to real chip
conditions. This implies that it is not sufficient to simply
calculate the sneak currents and write/read margin using simple
worst-case scenario, since the resistance map that results from
specific data pattern may lead to complex sneak path
configurations. The statistical distributions of write access
voltage (Vecess) and read margin (RM) are further simulated
from 1000 random data patterns of different array sizes, as
shown in Fig. 12. V.. is the voltage drop on the farthest
selected cell in the array, and RM is defined as the output
voltage swing ratio upon reading LRS and HRS. During the
write operations, the random data patterns that result from
resistance variations have a significant impact on the sneak

Cumulative Probability (%)
Cumulative Probability (%)
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path configuration and the IR drop along the selected signal
lines. Thus, both V,..ss and RM show wide spreads. The spread
of read margin involves both R;zs and Rys variations since the
worst-case data patterns for reading LRS and HRS are different,
as indicated in the inset of Fig. 12(b). The wide distributions of
Vaccess and RM present challenges for the design of peripheral
I/O circuits, and therefore, must be considered for device-
circuit co-design. Improving the robustness of peripheral
circuitry may help reduce the write failure probability that
results from the device-level variations. To meet the reliability
specifications (ppm and ppb level), the device-level tuning of
memory cells should accompany the circuit-level design and
system-level optimization.

B. Reliability-Emphasized Design

Reliability is one of the major concerns for RRAM
technology. For some applications such as working cache, it is
critical to design the system emphasizing reliability metrics.
Here we assess write disturb effects on crossbar RRAM arrays
as memory blocks ranging from 4x4 to 256x256. ‘Disturb’ on
RRAM originates from accumulated sub-threshold switching
which exhibits a stochastic behavior. Under V/2 bias scheme,
those half-selected cells (located along selected WL/BL) will
be biased with around half V4. To guarantee a successful write
operation on the farthest selected cell, a higher V44 may be
required to compensate for the interconnect IR drop. In this
case, half-selected cells face even worse disturb issues. This
can bring severe reliability challenges for circuit design.
Successive pulse programming on memory arrays may disturb
the status of the half-selected cells and generate error bits in the
memory block. By simulating consecutive pulse operations, the
reliable operating cycles for the memory block can be obtained,
as shown in Fig. 13. The decreasing trend of reliable operating
cycles with larger array size is due to the increase in array Vg
necessary for a successful write operation. For larger arrays,
half-selected cells are under more voltage stress in V/2 scheme.
This is a trade-off between reliability and sneak path problems.
As is well-known, higher R;zs and Rpygs benefit overall
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Fig. 16. Write latency as a function of interconnect R, and Cy..
reliability since sneak paths can be alleviated [23]. The design
options here can be either tuning device properties for better
disturb immunity below SV, or choosing an optimal memory
block configuration. For instance, for high-performance, close-
to-CPU applications such as working cache, the unit memory
block size should be reduced. For stand-alone data storage
applications which typically sees less programming cycles,
memory block size can be increased to reduce area overhead
and communication latency among blocks. Disturb on half-
selected cells takes place among a group of adjacent cells.
Therefore, after write disturb there will be some error bits in
the array, as shown in Fig. 14. The error bit number increases
for larger arrays. The results of Fig. 13 and Fig. 14 clearly
shows that RRAM device characteristics must improve
significantly before RRAM can be used in practical situations
where large block sizes and small error bit rate are needed. In
addition, embedding error correction codes in memory blocks
and implementing refreshing schemes are needed for memory
arrays for meeting the requirements of various system
applications.

C. Speed-Power Assessment

The developed model can be used for assessing circuit
performance by directly simulating write/read transient
operations in HSPICE. As shown in Fig. 15, the write energy
of a 16-kb array is simulated as a function of both R,;. and
R;gs. With increasing R,;., the energy consumption of the
array decreases. Also, increasing R;zs can reduce energy
consumption due to smaller leakage current of the whole array.
Hence, higher cell resistance is beneficial and should be one of
the targets for device engineering and tuning. However, it is
also shown that for a larger R,;., we may lose the benefit of
increasing R;gs. Since larger R,;. leads to larger interconnect
IR drop, it is not desired and should be optimized by
interconnect engineering. Fig. 16 is an assessment of
interconnect scaling impact on 16-kb RRAM circuit
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D. Array Architecture Optimization

The SPICE model can be used to evaluate new array
architectures. Since conventional crossbar structure suffers
from severe sneak path issues, here we study an alternative
array configuration. In this configuration, uniformly distributed
insulating nodes are built in the array, as illustrated in Fig.
17(a), to reduce sneak-path leakage. Fig. 17(b) shows that the
alternative configuration is effective in reducing write margin
(WM) variance (o/p) especially for the V/3 bias scheme, since
the distributed insulating network can ‘block’ sneak current
flowing in the array. The proportion of insulating nodes as
compared to memory nodes in the array can be adjusted to
meet circuit specifications, and the optimized configuration
method is effective for Mb-level arrays. As shown in Fig. 17(c)
and Fig. 17(d), under ‘1/3’ configuration, the WM can be
improved by 17 times for a 2-Mb array, and as a key metrics
the total energy-delay-product (EDP) can be reduced by 60%.
With a specific WM or EDP criterion, the maximum
achievable array size can be enlarged even considering the
capacity sacrifice due to insulating nodes.

E. Neuromorphic Computing Application

RRAM synaptic devices can be used to build neuromorphic
visual systems [24]-[25]. To emulate the biological synapses,
the devices should exhibit plasticity, i.e., the conductance can
gradually change according to the input stimuli. Fig. 18 shows
the gradual resistance modulation using consecutive pulses to
gradually RESET RRAM. Cycle-to-cycle variations of
resistance can be observed, which originates from intrinsic
variability of RRAM even below switching threshold. The
model can also reproduce the resistance distributions after
training processes. The simulated statistical distributions are
compared with the experimental data in Fig. 19(a) and Fig.
19(b). The tail bits observed in both experiments and
simulations indicate the training failure events. The model can
be further exploited to study neuromorphic computing systems.
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Fig. 18. Simulated gradual RESET training processes with variations using
consecutive pulse operations under different pulse heights.

. " Sk - o Ao

©
©

10 ® 1.0V (100s) 10k /O 0 1.0V (100s)
A 1.1V (100s) on A 1.1V (100s)
z 2 o o 1.2V(100s)

. m 1.2V (100s)

training failure
1k 10k 100k 1M
Resistance (Q)

0.5 y
training failure

Cumulative Probability (%)
8

Cumulative Probability (%)
8

=
=

10k 100k ™
Resistance (Q)
Fig. 19. (a) Measured and (b) simulated RRAM synapse resistance
distributions after 100-second DC stress training.

V. CONCLUSION

A SPICE model of RRAM with essential features such as
filament-based resistive switching, intrinsic variability,
switching parameter distributions and MLC capability is
developed and verified by a set of experimental data for ~10
nm device sizes. A wide range of design aspects focusing on
variability, reliability, speed-power performance, array
architecture, and neuromorphic computing are illustrated. The
interplay between device and circuit design are highlighted.
The SPICE model is a useful tool for system designers for
performance assessment and optimization. This work paves the
way towards device-circuit-system co-design for RRAM
technology.
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