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Abstract—The design space for edge AI hardware supporting
large language model (LLM) inference and continual learning
is underexplored. We present 3D-CIMlet, a thermal-aware mod-
eling and co-design framework for 2.5D/3D edge-LLM engines
exploiting heterogeneous computing-in-memory (CIM) chiplets,
adaptable for both inference and continual learning. We develop
memory-reliability-aware chiplet mapping strategies for a case
study of edge LLM system integrating RRAM, capacitor-less
eDRAM, and hybrid chiplets in mixed technology nodes. Com-
pared to 2D baselines, 2.5D/3D designs improve energy efficiency
by up to 9.3x and 12x, with up to 90.2% and 92.5% energy-delay
product (EDP) reduction respectively, on edge LLM continual
learning.

Index Terms—Transformers, Memory-Centric Computing,
Continual Learning, Heterogeneous Integration, Chiplets

I. INTRODUCTION

The rapid growth in large language models (LLMs) has
fueled a pressing need for efficient on-device inference and
learning solutions. The structural differences between LLM
training, fine-tuning, inference, and continual learning intro-
duce unique design challenges that have been overlooked
in prior efforts. These challenges, particularly in dataflow,
memory access, and computation, represent key gaps in the
development of hardware accelerators for on-device train-
ing [1]. As depicted in Fig.1, BERT and Adapter-BERT [2]
exhibit structural differences that highlight distinct hardware
requirements for continual learning and fine-tuning. To meet
the demands of high performance, flexibility, and adaptability,
a large amount of edge ML accelerator studies focused on co-
design integrating architectural and technological innovations.
These include circuit designs leveraging memory-centric ar-
chitectures based on silicon [3]-[5] or non-volatile memory
(NVM) [6], [7], as well as advanced modeling and design
exploration tools [8]-[11]. Furthermore, scaling and adapting
the single-chip designs to multi-die architectures [11]-[13]
has proven effective in bridging the gap between resource-
constrained edge and high-performance edge systems capable
of LLM workloads. However, despite rapid advancements
across the technology-to-system stack, significant challenges
persist in achieving efficient on-device LLM inference and
continual learning, largely due to the absence of comprehen-
sive co-design frameworks.

Multi-head Attention

Inference

SoftMax

Continual
Learning

U d z
A=QKT (> A" [=Attention go>

[Feedforward] [Feedforward] [Feedforward]

|Feedforward] [Feedforward] [Feedforward]

[ Glassifer | | Classifr | [_clas

Adapter Adapter
Layer Layer

Fine-tuning

| Watt_o H Watt_o H Watt_o ]

x N layer

Fig. 1. Transformer-based LLMs create diverse requirements for edge
inference and learning, adapter-based continual learning, fine-tuning, and
inference layer structures highlighted in our case study.

In this work, a 2.5D/3D thermal-aware co-design framework
leveraging heterogeneous in-memory computing is developed
to design efficient chiplet-based edge LLM engines supporting
inference and continual learning. With the developed co-
design and modeling framework, efficient edge LLM in-
ference and continual learning are demonstrated through a
case study of reliability-aware heterogeneous e DRAM/RRAM
chiplet designs in cost-effective, mixed-technology nodes. The
framework is open-sourced.! The contribution of this work is
summarized as follows:

o We develop 3D-CIMlet, a modeling and co-design frame-
work that allows rapid design space exploration of
2.5D/3D chiplet-based accelerator architectures for trans-
formers, leveraging heterogeneous memory technologies.

o Based upon 3D-CIMlet, we develop a heterogeneous
RRAM/eDRAM CIM system with 2.5D and 3D integra-
tion schemes and corresponding reliability-aware map-
ping strategies to support efficient inference and continual
learning of edge LLMs.

o Through chiplet-to-package, multi-scale design space ex-
plorations (DSE), we provide co-optimization guidelines
spanning CIM chiplet designs (intra-chiplet and inter-
chiplet), cost-aware and thermal-aware system integra-
tion, and runtime optimizations for continual learning.

Thttps://github.com/NanoX-Lab/3D-CIMlet
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Fig. 2. Overview of 3D-CIMlet, a 2.5D/3D chiplet-based modeling and co-design framework for edge LLM inference and continual learning.

II. BACKGROUND AND RELATED WORKS

Single-chip accelerators for transformer-based models, such
as SRAM-based CIM accelerators [5] and RRAM-based accel-
erators capable of storing all model weights [14], have shown
promise for LLM edge applications. However, these single-
chip solutions face limitations: they can only parallelize a few
transformer layers [5] and accommodate very tiny models [14]
within the on-chip embedded NVM. Benefiting from the
advanced packaging technologies, multi-chiplet systems com-
bine the strengths of mature single-die transformer accelerator
designs with high-density edge NVM storage, enabling more
robust and scalable edge LLM applications.

Multi-chiplet architectures have improved the performance
of deep neural networks (DNNs) inference and learning signif-
icantly in the past decades. CIM architecture based prototypes
include the CHIMERA Illusion System [12] and the multi-chip
module (MCM) TensorCIM [13]. Moreover, [11] proposed
a 2.5D chiplet-based RRAM-CIM accelerator simulator and
benchmarking tool for DNNs. Despite these advancements,
current architectures that rely on single-chiplet design founda-
tions have not been fully expanded to support diverse chiplet
configurations across systems to optimize for LLM workloads.

Previous modeling frameworks have primarily focused
on single-die accelerators, leaving multi-die designs for
edge LLM applications largely unexplored. Tools such as
Timeloop/Accelergy [8] and AccelTran [9] targeted DNNs and
sparsity-aware inference, respectively, but are limited to single-
die architectures and inference scenarios. 3D Neurosim [10]
explored advanced packaging with CIM architectures but
remains limited in scalability for complex chiplet systems.
Similarly, SIAM [11] benchmarked 2.5D RRAM-CIM acceler-
ators but lacks support for continual learning workloads which
are essential for edge LLMs.

III. 3D-CIMLET: CO-DESIGN FRAMEWORK

A. Methodology

3D-CIMlet is a two-prong co-design framework: (1) Ex-
ploiting transformer CIM designs with various chiplet archi-
tectures through advanced packaging, multi-scale technology-
to-system design space is fully exposed. Thermal-aware design
space explorations (DSE) can be conducted to probe into
design tradeoffs and optimization opportunities. (2) Building
upon the distributed memory-centric architectures, the frame-
work explores memory-reliability-aware mapping strategies
for both inference and continual learning. This is achieved
by connecting inference and continual learning characteristics
of edge LLMs to the heterogeneous memory characteristics
from the chiplet primitives.

Figure 2 provides an overview of 3D-CIMlet methodology
and key backbones. The framework takes transformer model
inputs and calibrated technology libraries. The technology li-
braries include silicon and beyond-silicon computational mem-
ories, die-to-die (D2D) interconnects, and 2.5D/3D integration
technologies as the foundational enablers. The scope of this
work is focused on a case study analyzing heterogeneous com-
putational memories in heterogeneous architectures. Hence,
we architect the edge LLM system consisting of resistive
RAM (RRAM), capacitor-less embedded DRAM (eDRAM),
and hybrid RRAM/eDRAM chiplets designed as modular CIM
primitives at both chiplet level and system level. The network-
on-package (NoP) and network-on-chip (NoC) hierarchies
support D2D interconnection and routing of CIM processing
engines (PEs). Each CIM chiplet contains CIM PEs for matrix-
vector multiplication (MVM), global buffers, accumulators,
and NoP drivers. Each CIM PE includes CIM subarrays
exploiting charge-based or non-charge-based computations,
softmax units, accumulators, buffers and NoC drivers. Since
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Fig. 3. The dataflow and static/dynamic operation partitioning in adapter-based (a) inference and (b) continual learning, together with (c) a reliability-aware
mapping strategy for the heterogeneous multi-chiplet edge LLM system. With mixed technology nodes supported, RRAM/eDRAM chiplets are leveraged for
inference and forward propagation during learning, while eDRAM chiplets are utilized for backpropagation.

this work focuses on edge LLM use cases, our case study
takes a relatively conservative, cost-driven assumption to land
on a sweet spot between cost [15], [16], embodied carbon
footprint [17], and system efficiency: RRAMs are based on
40 nm foundry RRAM technology in this cost-effective legacy
node [6], [12], [18], whereas capacitor-less eDRAMs being
used are mature in both planar [3], [4] and FinFET (14/16 nm)
nodes [19], [20]. For intra-chiplet NoC and inter-chiplet NoP
modeling in the backbone of the framework, BookSim [21]
is customized incorporating the 2D [22], 2.5D [23], [24], and
3D [25]-[27] system integration technologies.

First, for intra-chiplet design explorations, the framework
categorizes and compiles input model layers into static and
dynamic operations, and optimizations around those operations
are guided by heterogeneous memory characteristics seen in
silicon charge-based memories as well as beyond-silicon non-
volatile memories (NVMs) across chiplets. In our case study,
RRAM and eDRAM technologies form a wide “reliability
spectrum’: capacitor-less eDRAMs with unlimited endurance
would suffer from limited retention leading to frequent re-
freshes, whereas excessive writes to RRAMs with long re-
tention must be minimized. NoC behaviors and performance
are simulated in a cycle-accurate fashion, focusing on PE-
to-PE dataflow and router architecture, with power and area
estimations based on RC considerations and minimum metal
spacing. Second, inter-chiplet design exploration is associated
with model-to-chiplet mapping strategies (Section IV). NoP
behaviors and performance are analyzed considering D2D
dataflow and traffic patterns, including 2D/2.5D mesh and 3D

stacking schemes. Power and area are further modeled based
on 2D/2.5D data links and 3D TSV interconnects [23]-[27].

B. Chiplet-to-Package Thermal Modeling

Finite Element Method (FEM) is employed to thoroughly
analyze the thermal characteristics and performance of both
2.5D and 3D integration. The front end of line (FEOL) is
modeled as a surface heat source, with all chiplets mounted
on a 100 pm thick silicon interposer substrate. The chips
are mechanically reinforced and encapsulated with an adia-
batic molding compound. Heat transfer coefficients of 1000
W/(m2:K) on the top of silicon dies and 20 W/(m?K) on the
bottom of the organic substrate are used, reflecting moderate
forced convection cooling on the package surface.

IV. RELIABILITY-AWARE CHIPLET MAPPING STRATEGIES

The 3D-CIMlet framework aims to enable efficient chiplet
design and system integration by combining inference and
continual learning acceleration within a single chiplet-based
system. Hardware resources are allocated dynamically to
inference and continual learning tasks as needed. The 40
nm RRAM, 40 nm RRAM/eDRAM, and 14 nm eDRAM
chiplets serve as modular, reusable components that facilitate
the mapping of MVM operations and on-chip data storage
within an integrated edge LLM engine (Fig. 3). Additionally,
for inference-only edge use cases, the chiplet-based approach
allows for a cost-effective, scaled-back version with chiplets
in low-cost technology node only.

The dataflow of inference with learnable adapter layers is
shown in Fig. 3(a). Adapter layers are lightweight modules
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Fig. 4. The energy consumption and latency benchmark across different
chiplet architectures for inference workloads. Heterogeneous RRAM/eDRAM
designs improve the total inference energy by up to 1.4x and the inference
latency by up to 3.9x from RRAM-CIM chiplet baseline.

added into pre-trained backbone networks, adapting the mod-
els to new tasks without modifying the original pre-trained
weights. During inference, apart from the dynamic MVM
operations between K, Q, and V in the attention layers of
transformers, all other weights remain static since they belong
to the pre-trained backbone and adapter layers. As shown
in Fig. 3(c), inference workloads are mapped onto 40 nm
RRAM/eDRAM chiplets with the wide retention spectrum:
static MVM weights are handled by RRAM CIM engines, in-
cluding the weights of K, Q, V projection layers, feedforward
layers (I), and the trained adapter layers (3), which remain the
same with varying input activations. The dynamic attention
activations (2) varying with input activations are allocated to
eDRAM CIM engines without endurance limitations while
incurring the trade-off of short retention times.

In addition to the RRAM/eDRAM chiplets accelerating
inference, 14 nm capacitor-less eDRAM and 40 nm RRAM
chiplets are leveraged to expand the system for continual
learning, with the dataflow and mapping shown in Fig. 3(b)
and Fig. 3(c). Forward propagation (FP) during learning is exe-
cuted on the same chiplets allocated for inference, with the key
distinction that adapter weights are learnable during FP as the
signature of continual learning. To avoid endurance issues with
RRAM during weight updates in backpropagation (BP), these
learnable weights are initially loaded from the RRAM CIM
engines () to the eDRAM CIM engines @). BP operations are
distributed across RRAM chiplets and 14 nm eDRAM chiplets.
Errors propagated backward are multiplied by the transposed
adapter weights and the transposed FP output activations to
compute weight gradients. These computations occur in the
endurance-optimal eDRAM CIM engines ), with transposed
static weights in the retention-optimal RRAM CIM engines 6.
In contrast to high-bandwidth memory (HBM) based designs,
the 14 nm eDRAM chiplets allow on-die integration with
a processor unit, which orchestrates the process of storing
the generated weight gradients in eDRAM chiplets (7). These
gradients are retained until needed for weight updates during
the subsequent FP iteration in the eDRAM CIM engines @).
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Fig. 5. The NoC and NoP energy consumption and latency associated with
40 nm RRAM/eDRAM chiplets with varying RRAM-to-eDRAM capacity
ratios. (a) NoC and NoP energy cost per inference, (b) NoC and NoP latency
per inference. At a ratio of 4, the balance of NoC and NoP is reached with
minimized communication overheads.

V. DESIGN EXPLORATIONS AND ANALYSIS
A. Edge LLM Inference

For edge LLM inference, we evaluated models across two
key aspects: (1) different input modalities (text and image)
which require distinct embedding strategies, and (2) diverse
transformer architectures, including encoder-only and decoder-
only models. Language and vision models differ in embedding
approaches; language models use embedding tables, whereas
vision models often rely on convolutional layers. Our ex-
periments included a convolution-based embedding layer for
vision transformers to reflect this difference. Due to their
autoregressive nature, decoder-only models process one query
at a time and perform vector-matrix computations, in contrast
to encoder-only models, which predominantly have matrix-
matrix multiplications. Based on these distinctions, we eval-
uated a diverse suite of models: (1) BERT-base, an encoder-
only text model, on the GLUE dataset (average of 128 tokens);
(2) GPT-2, a decoder-only text generation model (128 tokens
and 1024 tokens) on the Wikitext-2 dataset; (3) DeiT-base, an
encoder-only image model, on ImageNet (196 tokens).

We illustrate 3D-CIMlet for inference through two sets
of DSE analyses. First, we analyze energy consumption and
performance across various chiplet configurations for inference
workloads, including BERT, GPT-2, and DeiT. As shown in
Fig. 4, across transformer model architectures, heterogeneous
chiplet designs with RRAM and eDRAM available in the
system demonstrate up to 3.9x and 2.6x performance and up
to 1.4x and more than 10*x energy efficiency improvement
compared to those with NVMs or charge-based memories only.

Second, RRAM-to-eDRAM capacity ratio in 40 nm
RRAM/eDRAM chiplets is a key design knob in our DSE
experiments. To better understand the overall impact of NoP
and NoC, their energy and latency overheads are evaluated.
As shown in Fig. 5, the NoC energy and latency costs per
inference gradually increase, while the NoP energy and latency
decrease as the RRAM-to-eDRAM capacity ratio scales. This
analysis reveals that an optimal balance in communication
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overhead between NoC and NoP can be obtained at a ratio
of 4 for RRAM/eDRAM capacity allocation across chiplets.

B. Edge LLM Continual Learning

For continual learning with 3D-CIMlet, Adapter-BERT is
evaluated on two configurations: (1) BERT-base (12 layers, 12
attention heads) on the GLUE dataset (average 128 tokens),
and (2) BERT-small (4 layers, 4 attention heads, average 32
tokens). During continual learning tasks, layer output activa-
tions during FP act as dynamic weights during BP, referred
to as backpropagation dynamic weights (BPDW), alongside
learnable adapter weights. The required data retention time
for BPDW, in the context of eDRAM refreshes, varies by
layer position within or across encoder/decoder modules.
Similarly, the retention time for weight gradients before the
next FP iteration depends on the learning mode (sequential or
parallel) and batch size. Sequential learning mode processes
input samples without overlapping layer computations within a
single iteration. This approach trades off longer retention times
for weight gradients with potentially lower system power. In
contrast, parallel learning mode pipelines input samples across
multiple layers simultaneously. 3D-CIMlet orchestrates on-
chip BP data storage through DSE on two fronts: (1) exploring
and optimizing the on-die eEDRAM-to-SRAM buffer capacity
ratio in eDRAM chiplets of multiple technology nodes for
BPDW storage, and (2) optimizing the on-chip storage of
weight gradients between RRAM and eDRAM chiplets.

For continual learning, each eDRAM chiplet is configured
with storage and CIM partitions to store and process BPDW.
With on-die SRAM buffers, we first evaluate the impact of
hybrid SRAM/eDRAM storage. A mapping strategy is taken
such that early-generated BPDW are stored in an SRAM buffer
until full, with subsequent weights stored directly in eDRAM
on the same die. SRAM-stored weights are transferred to
the eDRAM-CIM for computation as needed, while eDRAM-
stored weights are refreshed until the next computation. For the
BERT-small model with shorter iteration durations, reduced
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Fig. 7. Relative energy costs for weight gradient storage between 40 nm
RRAM (due to write-back) and 14 nm eDRAM (due to refresh) in (a)
sequential-mode continual learning and (b) parallel-mode continual learning,
analyzed across various integration schemes.

energy costs are observed at 14 nm and 16 nm nodes with
decreasing SRAM buffer capacities (Fig.6(a)). In contrast, for
the BERT-base model, increasing the eDRAM/SRAM capacity
ratio leads to higher energy costs for BPDW storage across
planar and FinFET silicon nodes (from 40 nm to 14 nm), due
to low SRAM leakage offset by high eDRAM refresh energy
over time (Fig.6(b)). These results suggest that advanced-
node eDRAM, with low refresh power, is better suited for
BPDW storage in small-scale continual learning scenarios. For
larger-scale continual learning, increasing SRAM buffer sizes
reduces energy costs despite SRAM leakage, while the density
benefit of capacitor-less eDRAMs mitigates the area overhead
of larger SRAM buffers within a given BPDW energy budget.

Second, the weight gradient storage options under sequential
and parallel learning modes are analyzed to identify runtime
optimization opportunities for continual learning workloads
(Fig. 7). In sequential mode (less thermal stress), the required
retention time for weight gradients decreases with smaller
learning batch sizes, which increases the likelihood of using
eDRAM. For larger batch sizes, high refresh energy costs
of eDRAM tend to push the storage needs towards RRAM,
especially with low energy overhead of 2.5D/3D packaging.
In parallel mode (higher performance), the inherently relaxed
retention requirement results in eDRAM being the preferred
storage medium across all batch sizes and integration schemes.

In broader use cases, continual learning and inference tasks
are periodically interleaved. 3D-CIMlet’s DSE provides in-
sights into the impact of different chiplet stacking architectures
on energy efficiency and energy-delay product (EDP) across
various model architectures and application scenarios (Fig. 8).

For inference (Fig. 8(a)), 2.5D/3D architectures significantly
improve energy efficiency and latency of traditional 2D pack-
ages, with TOPS/W increased by 9.9x for BERT-base and
4.5x for DeiT-base, compared to 1.1x for GPT-2. The primary
driver of these energy efficiency and latency gains with 3D
stacking is reduced communication overhead from enhanced
D2D connectivity. The D2D communication energy in BERT-
base and DeiT-base constitutes 90.8% and 78.3% of total
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energy in the 2D architecture, significantly benefiting from
chiplet integration. In GPT-2 architecture, the autoregressive
design leads to sequential token generation, resulting in neg-
ligible D2D communication costs compared to computation.
NoP accounts for only 8.7% of total energy during 1024-token
inference with modest TOPS/W improvements.

For continual learning (Fig. 8(b)), 9.3x and 12.0x improve-
ments in energy efficiency, along with a 90.2% and 92.5%
reduction in EDP, respectively, are achieved by the 2.5D and
3D designs through the 3D-CIMlet framework compared to 2D
baselines. The inference exhibits fewer gains with only 40 nm
RRAM/eDRAM chiplets. For fine-tuning, the rise in on-chip
computations outweighs the increase in NoP communication
costs, resulting in diminished improvements overall.

C. Thermal Analysis

Chiplet-to-package thermal analysis plays a pivotal role in
edge LLM continual learning by highlighting key thermal
challenges and trade-offs in managing temperatures for ad-
vanced 2.5D/3D designs. Figure 9 illustrates the packaging-
level thermal modeling setup (a), and the peak temperature
increase contours with various packaging schemes (b)-(d). A
non-uniform temperature distribution is observed due to vary-
ing power characteristics across chiplets. Thermal modeling
reveals distinct temperature profiles for 2.5D/3D packaging
schemes. In the 2.5D setup, the maximum temperature in-
crease (Tmax) reaches 29.3 K, with a temperature difference
(AT) of 12.2 K, indicating moderate thermal stress. However,
persistent hotspots are found in the 14 nm eDRAM chiplet
due to high power density and limited cooling pathways.

(a) molding :
LN 2.5D Packaging

FEOL| Chiplet Chiplet RRAM/eDRAM ' RRAM/eDRAM 20349
Chiplet 1-7 Chiplet 8-14 27.997
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Chiplet 15-21 | Chiplet 22 18527
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Fig. 9. Chiplet-to-package thermal analysis for edge LLM continual learning
across various packaging configurations. (a) Schematic of the 2.5D/3D pack-
ages for thermal modeling and analysis. Peak temperature increase contours
are generated across three different packaging designs: (b) traditional 2D
packaging layout with a large form factor, (c) 2.5D chiplet integration with
limited die stacking, and (d) full 3D stacking.

Adopting a worst-case scenario, full 3D stacking shows
highest thermal stress driven by increased thermal resistance
and inefficient heat dissipation, calling for additional cooling
to mitigate thermal buildup. It is worth noting that the on-die
memory area allocation between RRAM and eDRAM macros
in the 3D chiplets and the package design jointly lead to non-
uniform peak temperature distribution with cooler eDRAMs,
which helps mitigate the impact on eDRAM retention. Com-
paratively, 2.5D designs offer better temperature uniformity
compared to 3D designs but still face challenges with localized
thermal hotspots, trading off system-level compute density.

VI. CONCLUSION

We present 3D-CIMlet, a co-design framework that har-
nesses the unique capabilities of heterogeneous CIM chiplets
within 2.5D/3D multi-die architectures, enabling efficient in-
ference and continual learning for edge LLMs. 2.5D and 3D
designs with heterogeneous RRAM/eDRAM chiplets lead to
significant energy efficiency and EDP benefits compared to 2D
architecture for continual learning. At the core of 3D-CIMlet’s
co-design capabilities are diverse embedded computational
memories, in-memory compute-storage allocation strategies,
NoP/NoC interplays with intra-chiplet designs, flexible model-
to-architecture mapping space, and chiplet-to-package thermal
analysis. These features, extending beyond the case study
presented, will enable memory-reliability-aware and thermal-
aware system designs for scalable and energy-efficient deploy-
ment of future LLM workloads at the edge and beyond.
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