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Non-volatile memory (NVM) based compute-in-memory (CIM) 
accelerators are being actively developed for energy-constrained 
edge AI applications, where an increasing number of workloads 
demand high-precision floating-point (FP) data formats [1-2]. 
Existing NVM-based FP-CIM macro designs face three major 
challenges: (1) significant area and energy overhead from on-chip 
integer/FP conversion or large pre-alignment logic, (2) accuracy 
degradation due to architectural limitations, such as row-wise pre-
alignment of weights, and (3) limited operating frequency 
constrained by slow NVM sensing [3-4]. To address these limitations, 
we develop and present CENTAUR, a floating-point CIM engine 
featuring RRAM-eDRAM fusion macros and a novel FP 3D-MAC 
dataflow. Our new CIM architecture eliminates non-computational 
(alignment-induced) accuracy loss, reduces area overhead, and 
enables high-speed, energy-efficient FP computation. Fabricated in 
40 nm CMOS with foundry RRAM and validated on a full-stack 
testing platform, CENTAUR achieves 600 MHz operating frequency, 
38.5 TFLOPS/W energy efficiency, and high inference accuracy with 
Tiny-ViT (Vision Transformer) on CIFAR-10 with only 1.75% 
accuracy degradation compared to software baseline. CENTAUR 
marks the first NVM-eDRAM CIM chip. 
As shown in Fig. 1, floating-point matrix-vector multiply-accumulate 
(MAC) involves two distinct components: static, input-agnostic 
mantissa processing, and dynamic, input-dependent exponent 
operations. This intrinsic partitioning motivates our reliability-aware, 
RRAM-eDRAM co-computation flow: static weight mantissas are 
stored and processed in RRAM, while exponent-related dynamic 
computations are mapped to refresh-free eDRAM. In the proposed 
FP 3D-MAC operation, conventional exponent alignment is 
reformulated as a 3-operand multiplication using a shift vector Sxy, 
effectively forming a 3D dot-product. This 3-operand computation 
maps efficiently onto a 3T1C gain-cell structure, leveraging eDRAM’s 
storage node and two input ports. The fusion CIM co-computation 
begins with RRAM-based multiplication of weight mantissa and input 
mantissa. The resulting partial product is then transferred to eDRAM, 
where the 3-operand multiplication is performed. Final results are 
accumulated in a digital 3D-MAC accumulator, which also performs 
overflow detection and conversion back to floating-point format. 
Fig. 2 illustrates CENTAUR’s top-level architecture and dataflow. 
The fusion CIM engine consists of four RRAM-eDRAM fusion CIM 
macros, a sign-exponent processing core, a top-level engine 
controller, a global SRAM buffer, and an input/output SRAM buffer. 
Weight mantissas and exponents are stored in the RRAM macros 
and the exponent core, respectively. The input vector is split into 
mantissa and sign-exponent parts, temporarily stored in the global 
buffer. The exponent core reads input sign and exponent, fetches 
weight exponent from RRAM, performs sign multiplication, and 
writes the result to the sign register to steer accumulation. The 
exponents are bias-adjusted, one-hot encoded into shift vectors, and 
written into eDRAM via the global buffer. Input mantissas are then 
injected into both RRAM and eDRAM macros for co-computation. 
RRAM handles mantissa multiplication, while eDRAM performs shift-
vector-based multiplication. Positive/negative MAC results are then 
separated and sent to the 3D-MAC accumulator. Data transfer 
between RRAM and eDRAM is managed by the fusion CIM bridge, 
while local and global flows are controlled by the macro and top 
engine controllers. Leveraging the decoupled read/write ports of 
gain-cell eDRAM, our design enables parallel computation and data 
updates across different rows, reducing latency over conventional 
alignment-based approaches. 
Fig. 3 presents a detailed example of the fusion CIM 3D-MAC 
operation in FP5 format for simplified illustration, showing how a 
conventional floating-point 2D-MAC is transformed into a fixed-point 

3D-MAC via RRAM-eDRAM co-computation, and cycle-accurate 
results at each computation stage. The digital 3D-MAC accumulator 
consists of four stages: data accumulation, partial sum tree, spatial 
sum tree, and temporal accumulation. After temporal accumulation, 
leading-one detection and fixed-point position prediction are 
performed to extract the resulting exponent and mantissa, which are 
then packed back into FP format with overflow detection. To meet 
timing requirements, the accumulator is deeply pipelined and 
implemented using a power-aware synthesis flow with a multi-Vt 
library. Post-routing simulation results show that the proposed 3D-
MAC fusion CIM scheme achieves a 1.76× improvement in energy 
efficiency over conventional alignment-based FP-CIM, primarily by 
replacing high-overhead pre-alignment logic with eDRAM-based 
CIM operations. 
Fig. 4 presents the macro-level circuit design, including detailed 
schematics of the RRAM and eDRAM macros, as well as the fusion 
CIM bridge. To improve RRAM read speed, a voltage-mode two-
stage high-speed sense amplifier is implemented, consisting of a 
pre-amplifier followed by a strong-arm latch. The simulated offset is 
less than 5 mV, with an operating speed exceeding 800MHz. The 
gain-cell eDRAM adopts a 3T1C structure with a metal-stacked MOM 
capacitor and high-Vt access transistor, enabling refresh-free CIM 
operations with over 200 μs retention time. The timing diagram in Fig. 
4 illustrates macro-level sensing, control signal sequencing, and 
cross-domain data transfer through the fusion CIM bridge. To 
enhance throughput, an interleaving scheme is applied across 
multiple RRAM and eDRAM macros, effectively doubling data 
bandwidth and improving overall system performance. 
Fig. 5 shows a testing setup connecting the CENTAUR test chip to a 
Xilinx Ultrascale+ FPGA board, where a MicroBlaze CPU executes 
C-coded initialization and configuration routines, interfacing DDR4
and the test chip through a DDR4 controller and a custom AXI-to-
chip interface IP. Internal signals are monitored using Vivado ILA,
while external waveforms are captured with an oscilloscope. We
evaluate inference accuracy and power consumption running Tiny-
ViT on CIFAR-10. CENTAUR achieves 84.5% top-1 inference
accuracy, with only 1.75% degradation from the software baseline.
Oscilloscope waveforms capture an end-to-end latency of 11.86 μs
for a typical fusion CIM task when operating at 600 MHz.
Fig. 6 summarizes the area and power breakdown, figure-of-merit 
(FoM) comparison, and benchmarking against prior works. The 
engine-level area breakdown shows that RRAM and eDRAM macros 
together occupy 69.9% of the total area, while the 3D-MAC 
accumulator accounts for 22.3%. Measured power profiling reveals 
that over 70% of the total power is consumed by digital logic—
consistent with the characteristics of our fully digital FP-CIM 
implementation and design specs. These results suggest that the 
CENTAUR architecture could gain substantially from scaled NVMs 
on advanced nodes. For benchmarking, we first define quality-of-
result (QoR) as the ratio of on-chip inference accuracy to the ideal 
software baseline accuracy. The overall FoM—defined as energy 
efficiency × operating frequency × quality-of-results (QoR) / 
normalized area—provides a more comprehensive metric by 
incorporating both operating speed and inference quality, better 
reflecting real-world utility. CENTAUR achieves up to 4.84× FoM 
improvement over SRAM-CIM [5] and 8.48× over RRAM-CIM [6]. 
Finally, the testing setup, die photo, and detailed chip summary are 
provided in Fig. 7. 
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Fig. 1.  FP-CIM challenges and our solutions (fusion architecture). 
Fig. 2. System architecture, dataflow, and pipeline optimization of 
our RRAM-eDRAM fusion CIM Engine. 

Fig. 3. Fusion CIM 3D-MAC operation, accumulator architecture, 
and simulated performance benchmarking.  

Fig. 4. RRAM-eDRAM macro circuit design, high-speed RRAM 
sense amplifier, and interface timing for fusion CIM. 

Fig. 5. Testing methods and silicon measurement results. Fig. 6. Engine-level area/power breakdown and FoM comparison. 
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Fig. 7. CENTAUR’s testing setup, die photo and chip summary.
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Die Photo Chip Summary
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