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Abstract—This research presents the design and experimental 

validation of a novel RRAM-Gain Cell joint memory to 

facilitate efficient continual learning in edge devices, 

addressing the challenges of resource-constrained 

environments while supporting adaptive AI model updates. 

HfO2 RRAM and Indium Tin Oxide (ITO) gain cell are 

monolithically integrated on 130 nm Si CMOS technology, 

enabling high-speed training and low-standby-power 

inference for edge devices. High-bandwidth on-chip data 

transfer can have bandwidth that is 90× state-of-the-art 

HBM3E and 211× PCIe 7.0, enabled by high-density 

monolithic 3D interconnections and high-speed transfer 

circuits within the integrated joint memory macro. The ALD 

ITO FET exhibits positive VTH of 0.67 V, excellent SS of 65 

mV/dec, high on-current of 20 µA/µm, and low off-current of 

5×10-18 A/µm, as extracted from > 5,000 s retention. The 

joint memory macro consumes 78% less standby power and 

95% less training energy for MobileBERT compared to 

SRAM with iso-capacity. 

I. INTRODUCTION 

To achieve artificial general intelligence, it is essential to 
develop the capability for adaptive learning from the 
environment to handle real-world dynamics effectively. 
Continual learning (Fig. 1) [1] can accumulate knowledge 
without catastrophic forgetting, which is particularly 
beneficial for edge devices that frequently interact with 
environmental data. Implementing edge AI is challenging with 
current memory technologies, particularly when balancing the 
divergent requirements for training and inference within strict 
energy constraints. Previous work for edge models small 
enough to fit within the chip utilized separate SRAM and 
RRAM macros for training and inference respectively [2], 
resulting in area overhead and data transfer delays. In this 
work, we monolithically integrate two on-chip memory 
technologies, oxide semiconductor (OS) gain cell and 
Resistive RAM, into a compact joint memory cell on a Si 
CMOS platform (Fig. 2). The gain cell is used as training 
memory capitalizing on its high speed and infinite write 
endurance [3][4], while the RRAM serves as the inference 
memory due to its low standby power and non-volatility. 
High-bandwidth on-chip data transfer within the memory 
macro is achieved by high-density monolithic 3D vertical 
connections and a novel high-speed transfer circuit. The 
transfer bandwidth is 90× that of state-of-the-art (SoTA) 
HBM3E [5][6] with the same form factor. The joint memory 
macro offers 78% less standby power and 95% less 

MobileBERT training energy than SRAM, and 62% less 
inference energy than RRAM and SRAM separate macros.  

II. RRAM-GAIN CELL MEMORY 

RRAM is well-suited for inference at the edge due to its 
low standby power and non-volatility, though its low 
endurance makes it unsuitable for training. Conversely, the 
gain cell is well-suited for a training memory, offering high 
speed and infinite endurance. Here we designed and fabricated 
an RRAM-gain cell joint memory, in which each cell has a 
1T1R2OS structure (Fig. 2): 1T1R with a front-end of line 
(FEOL) Si FET and a middle-EOL RRAM, and 2T gain cell 
with 2 back-EOL OS FETs. The joint memory cell size is 
determined by the footprint of a 2T OS gain cell as it is 
stacked on top of the 1T1R. For each bit cell, the 2T gain cell 
and 1T1R share the write bitline (WBL) to implement in-
memory-macro data transfer. Peripheral circuitry is shared 
between the gain cell and RRAM, further reducing overall 
macro area to 0.52× compared to separate memory macros.  

A. Integration Experiment Details 

W/L = 1000 nm/ 500 nm Si I/O transistor is fabricated in 
STMicroelectronics 130 nm CMOS technology with BEOL 
fabrication up to metal M4 on a 200 mm wafer. 
TiN/Ti/HfO2/TiN RRAM stack is integrated between metal 
layers M4 and M5 at CEA-Leti, with 5 nm HfO2 film as the 
RRAM switching material and 5 nm Ti as the top electrode 
(Fig. 3). Alignment marks are patterned with M5 for gain cell 
integration at Stanford. After etching the Si3N4 top passivation 
layer to open the via for connection, the ALD ITO FET gain 
cell is fabricated above the M5 and Si3N4 passivation layer 
(Fig. 3). Ti/Pt gate metal and Ni/Au source/drain metal are 
deposited by e-beam evaporation at room temperature. 10 nm 

of HfO2 gate dielectric is deposited by ALD at 200℃ , 

followed by an optimized 2 nm of ALD ITO film at 200℃ for 

a good channel-dielectric interface. This entire gain cell 

fabrication flow uses process temperature under 200℃, which 

is compatible with BEOL integration with Si CMOS [7].  

B. Measurement of Integrated Joint Memory Cell 

The ALD ITO FET fabricated on the CMOS chip shows 

excellent characteristics without observable integration 

degradation as in [3][4]. Fig. 4 and 5 show the ITO FET has 

positive VTH of 0.67 V and excellent SS of 65 mV/dec, which 

enables the operation voltage to be < 2 V. It also has high on-

current of 20 µA/µm and mobility of 20 cm2V-1s-1, enabling 

the gain cell to achieve high-speed performance. The ALD 

ITO gain cell has measured retention of > 5,000 s with 



extracted off-current of 5×10-18 A/µm under a standby WWL 

voltage of -0.5 V applied (Fig. 6). Fig. 7 shows the Si access 

transistor characteristics and RRAM DC switching curve with 

80 consecutive cycles. The optimal set gate voltage is 2.2 ~ 

2.4 V giving small standard deviation 10 µS (Fig. 8(a)), and 

the BL voltage is constrained < 2 V to avoid disturbing the 

gain cell. The resistance distribution for 100-cycle AC pulse 

programming and the programming condition are shown in 

Fig. 8(b). RRAM LRS is programmed to be 20 kΩ with a read 

current of 10 µA for a 0.2 V read voltage to match the read 

current of the gain cell and thus the read circuit can be shared. 

Fig. 9 shows small relaxation with the optimal set gate voltage 

of 2.3 V. Fig. 10 shows that the gain cell is not disturbed by 

the shared WBL with RRAM, due to small WBL-to-storage-

node coupling and extremely low off-current of the ITO FET. 

III. HIGH-BANDWIDTH DATA TRANSFER 

Continual learning can adapt itself to different tasks 

through interaction with the environment data, which requires 

incremental updates to the weight parameters, and thus 

frequent data transfer between the training memory and 

inference memory. High-bandwidth on-chip data transfer can 

be achieved through high-speed in-memory-macro transfer 

circuit and high-density vertical monolithic 3D connections. 

A. High-speed In-memory-macro Transfer Circuit  

To implement in-memory-macro data transfer, a high-

speed peripheral transfer circuit is designed by connecting the 

sense amplifier (SA) to the WBL circuit, which bypasses the 

memory I/O interface. Fig. 12 shows the circuit schematic and 

the timing diagram. Selection signals in the data I/O block 

enable switching between three operational modes: data input, 

data output, and internal data transfer. A two-stage current SA 

is adopted for high-speed sensing, and it is shared between the 

RRAM and the gain cell to reduce area overhead. In the first 

stage, the current difference between the read current signal 

and the reference current is converted to a voltage difference. 

In the second stage, the voltage difference is further amplified 

to a full-swing voltage signal. Meanwhile, data-output or data-

transfer is also activated. The write domino circuit starts with 

the pre-charge signal disabled, and then transfers either SA-

output or data-input to WBL with level shifting from 0.9V to 

1.8V. Transistor MSA and MSAB are sized to W/L = 800 

nm/250 nm, balancing the need for a strong drive to handle 

weak SA/SAB voltages with the requirement for low 

capacitance to enable fast sensing. They are placed above the 

selecting transistor to avoid Miller effect unbalance during 

switching due to inverted SA and SAB voltage. Simulation 

results in Fig. 11 with TSMC 40 nm technology show that the 

designed circuit transfers data with 1 ns delay. The transfer 

energy of 30.6 fJ/bit is approximately two orders of magnitude 

lower than HBM, which typically consumes around 3-4 pJ/bit 

with > 60% from the data movement itself [8].  

B. High-density Monolithic 3D Vertical Connection 

With the high-speed transfer circuit, the data transfer rate 

is 1 Gbps for each BL. Assume the RRAM-GC macro has the 

same array configuration (subarray size of 512×64) and 

macro size (0.85 mm2 for 3Mb) in [9]. SoTA HBM3E [5][6] 

delivers transfer rate of 9.8 Gbps per pin and bandwidth of 

1.2 TB/s with 1024 pins for a form factor of 11mm×11mm. 

With the same form factor, the 52 MB joint RRAM+GC 

memory macro has 866,304 parallel BLs and can achieve 108 

TB/s bandwidth, which is 90× higher than SoTA off-chip 

HBM3E, 211× higher than SoTA PCIe 7.0 (Fig. 13(b)). 

Despite the lower transfer rate per pin (Fig. 13(a)), the high 

bandwidth results from leveraging the high-density 

connections with on-chip monolithic 3D integration.  

IV. EDGE CONTINUAL TRAINING AND INFERENCE 

Edge devices are strictly energy-constrained, and not 

activated very often, so standby power is critical. RRAM has 

low standby power and can even be powered-off [10] with the 

data maintained in the non-volatile memory. With weights 

transferred from gain cell training memory to RRAM 

inference memory, the gain cell doesn’t need to be refreshed, 

and thus doesn’t add to the standby power. Even compared to 

SRAM with power-reduction techniques [11], the RRAM-GC 

joint memory still has 78% standby power saving (Fig. 14). 

During MobileBERT [12] training, the total memory energy is 

94% less (Fig. 15(b)) compared to SRAM [13], attributed to 

small memory leakage energy during computation operations. 

If 50% weight adaptivity is assumed for continual learning 

[14], the training energy can be further reduced, as the 

dominant part of the energy consumption (write energy) 

decreases (Fig. 15). During MobileBERT inference, gain cell 

can be reused as buffer memory (Fig. 16(a)). Based on 

ScaleSim [15], The RRAM-GC joint memory has 47% energy 

saving compared with separate RRAM+GC macros, and 62% 

energy saving compared with separate RRAM+SRAM macros 

in both weight-stationary and output-stationary dataflow, due 

to low gain cell leakage energy (Fig. 16).  

V. CONCLUSION 

The RRAM-gain cell joint memory synergistically 

combines the non-volatility of RRAM and high endurance of 

gain cell without incurring area or delay overhead thanks to 

the monolithic 3D integration. Using gain cell for training and 

RRAM for inference, this joint memory has high data transfer 

bandwidth, low standby power, and low active energy for 

continual learning. This work offers a potential single joint 

memory solution for edge AI and motivates further research 

on combining application-domain specific device technologies 

using monolithic 3D integration that underpins the N3XT 3D 

vision for future computing hardware technologies [7]. 
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Fig.2 RRAM-Gain Cell (GC) joint array with 3D-stacked bit-cell, in-memory-macro data 

transfer circuit, and shared peripheral circuit. 

Fig.1 Continual learning can adaptively fine-

tune the model based on the inference feedback 

with the re-training cycle 1-7. Joint memory 

facilitates continual learning at the edge by 

using different memories for training and 

inference and high-bandwidth data transfer. 

Fig.3 Photo of the 200 mm wafer and optical 

microscope, TEM, and EDS images of 

fabricated RRAM-gain cell joint memory. 

Top row shows the 1T1R structure and 

bottom row shows the 2T OS gain cell 

integrated on the top of the same chip. 

Fig.4 Measured transfer and output curve of L = 1 µm 
ALD ITO FET fabricated on the integrated chip. Positive 

VTH of 0.67 V and high on-current are achieved.  

Fig.5 Extracted (a) SS and (b) field-effect 

mobility from measured transfer curve of L 

= 1µm ALD ITO FET 

Fig.6 Measured retention of > 

5,000 s of gain cell fabricated on 

the integrated chip. 

Fig.7 Measured (a) Si access transistor output curve and (b) 80-

cycle RRAM DC switching curve for RRAM in joint memory.  

Fig.8 (a) Set gate voltage optimal range is 2.2-2.4 V. (b) Measured 

resistance distribution after 100-cycle AC programming of RRAM of the 

joint memory. Insert: voltage pulse programming condition.  



 

 

 

 

 

 

 

 

 

 

 

 
Fig.10 Measured (b) GC read current no 

transient change under WBL disturb pulse 

from (a) RRAM programming and GC write 

on the same column for the joint memory.  

Fig.9 Measured small RRAM 

relaxation effect with set gate 

voltage > 2.2 V.  

Fig.12 (a) Circuit schematic and (b) two-stage timing diagram of the 

designed transfer circuit with sense amplifier, data I/O, and level shifter. 

Data transfer is performed at the second stage.   

Fig.11 Simulation results of (a) three consecutive operations of 

data transfer for different data with each in 1 ns. Details of (b) read 

and (c) write-back within the 1 ns. Simulated with TSMC 40 nm.  

Fig.13 Despite (a) the lower transfer rate per pin, RRAM-GC joint 

memory still has (b) higher transfer bandwidth by leveraging the 

high-density connections with on-chip monolithic 3D integration. 

Fig.14 78% lowered standby 

power compared to low-

power (LP) SRAM with 

power reduction techniques.  

Fig.15 (a) Energy breakdown for the RRAM-GC 

joint memory during MobileBERT training. (b) 

94% - 96% (w/o and w/ continual learning) 

memory energy is reduced compared to SRAM.  

Fig.16 (a) Systolic array accelerator architecture for 

MobileBERT inference. (b) The RRAM-GC joint memory 

has 47% and 62% energy saving compared with separate 

RRAM+GC macros and RRAM+SRAM macros, respectively 


