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Introduction
Neuro-vector-symbolic (NVS) computing aims to combine neural models with vector-symbolic architectures (VSA),
also known as hyperdimensional computing (HDC) built upon vector arithmetics in the high-dimensional space
[1]. NVS computing merges human-like symbolic learning and reasoning with hierarchical, context-based neural
representations, marking a key development in the third wave of artificial intelligence represented by Neuro-Symbolic
AI [2]. With heterogeneous model architectures embedding diverse backbones and multiple data representations, NVS
computing promise the next level of learning capability, robustness, and explainability. Deep neural networks (DNNs)
[4] and spiking neural networks (SNNs) [5] in general, with specialized convolutional neural networks (CNNs) [3] and
transformers [6], may form multi-modality neural backbones. VSA components [7][8][9] enhance cognitive reasoning,
continuous learning, and domain adaptation. With NVS models handling data-intensive workloads, tailored hardware
platforms are needed for sustained efficiency bridging the edge-cloud continuum. Targeting NVS-AI hardware, it is
essential to have energy-efficient compute kernels optimized in a fine-grained fashion for various NVS components, as
well as flexible architecture integration. These two critical needs can be met if we jointly exploit the 3D integration
platforms and emerging device technologies with silicon CMOS foundation ("CMOS+X"), due to the vast design space
exposed from material/device level to architecture level. We provide an overview of emerging device technologies
which may enable system integration of hybrid neural and vector-symbolic models through NVS co-designs.

Device Technologies for Heterogeneous Nanokernels
A tailored architecture for hybrid NVS models may comprise several essential processing kernels, including digital
multiply-accumulate (MAC), analog MAC, multiply-add-permute (MAP), activation and synaptic functions, distance
measurement kernels (search), and efficient on-chip memories. Properly designed and realized with diverse device
technologies, these "nanokernels" can be further integrated into 2D/2.5D/3D systems tailored for NVS architectures.
Figure 1 illustrates, in a first-order fashion, an example mapping from selected device characteristics to sample NVS-
friendly "CMOS+X" nanokernels. For neural models, near-/in-memory acceleration can leverage silicon CMOS
and novel BEOL-compatible transistors such as ultra-thin oxide semiconductor FETs (OSFETs) and transition metal
dichalcogenide FETs (TMD-FETs) to provide digital logic realization [10], and high-speed, low-leakage on-chip
memories like embedded DRAM [12]. As a result, digital/analog MAC and activation kernels may be realized across
FEOL and BEOL stacks [11]. Non-volatile memories such as resistive RAM (RRAM), phase change memory (PCM),
magnetic RAM (MRAM), ferroelectric FET (FeFET), and electrochemical RAM (ECRAM) can be used to build
analog MACs, activation, and synaptic kernels [4, 13, 14, 15], employing intrinsic physics and circuit-level properties.
For VSA components, MAP and similarity measurement kernels are tailored specifically for high-dimensional vector
operations, which inherently lead to memory-centric designs. Compact MAP kernels for HD computing may be
realized with a mixed analog-digital blocks by integrating BEOL transistors and memory devices with excellent 3D
scaling characteristics [9]. In-memory search operations for similarity measurement kernels can be efficiently realized
with content-addressable memories (CAM), effectively utilizing the non-volatility and parallelism of BEOL NVM
arrays [16]. Unique properties of materials and 3D scalability of devices may become the key pillars for future
energy-area-efficient nanokernel designs for novel neuromorphic models.

The expansive design space offered by co-integration of CMOS+X technologies presents new opportunities for
co-design of NVS-AI hardware with hybrid nature. Looking forward, cross-layer co-design activities and hardware
prototyping (devices, circuits, and chiplets) must go hand in hand to truly materialize the promises and accelerate the
lab-to-fab transition.
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Fig. 1: Co-design and co-integration of "CMOS+X" nanokernels serve as the foundation for neuro-vector-
symbolic (NVS) computing. With heterogeneous model architectures embedding diverse backbones and multiple
data representations, NVS computing promise the next level of learning capability, robustness, and explainability.
Tailored hardware platforms are needed for sustained efficiency in a cost-effective fashion bridging the edge-cloud
continuum. Here, a first-order mapping from selected device characteristics to sample NVS-friendly "CMOS+X"
nanokernels is shown: monolithic and heterogeneous integration of silicon CMOS and BEOL devices, along with
dense off-chip storage, form a suite of efficient building blocks that require orchestration for tailored NVS architectures.
The schematics in the circuit layer are adapted from [7][8][9].
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