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1 Topic
Our position paper discusses hybrid analog and digital systems design methodology.

2 Challenge
The rapid growth of analog sensor data has outpaced intelligent processing capabilities in many domains,
including scientific experiments, causing an analog data deluge that obscures valuable information. At the
LHC, Petabytes per second of data are generated thus requiring very high-speed offline filtering to avoid data
pileups. A 2021 report [1] depicted in Fig.1, illustrates the total amount of data produced by LHC collisions
in one year exceeded the total size of files ever stored on Amazon cloud storage services by approximately
two order of magnitude. More than 90% of collision data is generated by a single detector system the silicon
pixel detectors.

The data bottleneck is by far the greatest challenge faced by the HEP community. Currently, more than
99.995% of collision data is filtered out during offline data analysis looking only for rare interactions hoping
to discover new Physics. The Level 1 trigger is mostly responsible for large amount of data to be rejected
on-sensor reducing the information transfer from PBps to TBps. The innermost layers of the CMS/ ATLAS
detectors currently do not contribute to the Level 1 trigger.

3 Opportunity
The data bottleneck challenge creates a unique opportunity for the HEP community to develop new com-
puting co-design paradigm and methodology.

Current digital systems are unable to handle data rates needed at the LHC due to conversion overheads,
limited parallelism, and resource intensiveness [2]. On-sensor analog deep learning can eliminate data con-
version and storage overheads by filtering non-essential signals at the acquisition stage. Similarly, at the

Figure 1: Big Data in HEP: Orders of magnitude involved in different data sources for several big data players. The area of
each bubble represents the amount of data streamed, hosted or generated. The accompanying text annotations emphasize the
crucial factors considered in the estimation process. Average per-unit sizes are indicated in parentheses, where italic denotes
measures derived from reasonable assumptions due to the absence of available references
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signal processing stage, analog deep learning can leverage non-von Neumann architectures to minimize data
movements and employ physics-based computing, such as using Kirchoff’s law for summation by representing
operands in the charge or current domain, to maximize energy efficiency [3]. Thereby processing signals
closer to the source in the analog domain offers significant benefits in performance, speed, area, and power,
and can enable novel signal processing paradigms such as asynchronous real-time waveform analysis and
direct signal-to-inference capabilities.

The flow need to address three sections illustrated in Fig. 2 :

• A first pre-silicon stage algorithmic flow to convert bit representations of software learning models to
analog representations (such as charge, time, or current) suited for silicon placement. The algorithm
also needs to solve optimal mapping of deep learning layers to a system of analog crossbars while
maximizing throughput by concurrent processing, minimizing data transmission lengths and rates,
maintaining load balancing, minimizing model load cycles from off-chip memories, etc.

• A second on-silicon stage that leverages novel mixed-signal processing architectures as well CMOS
based and CMOS+X (FeFET, Floating Gates, PRAM, ReRAM, MRAM...) devices to fully exploit
analog processing capabilities while addressing challenges such as design complexity and process vari-
ability.

• Finally, a third post-silicon stage is needed to address the need for continual monitoring and correction
of the computing substrate against chip-to-chip, across-chip, and time-varying degradation such as
process variability, aging, and temperature-induced variations.

Figure 2: Co-designed analog acceleration flow consisting of pre-, on-, and post-silicon stages for reliable software-to-analog
conversion, scalable synthesis and design, and runtime error monitoring and corrections.

4 Timeline
The AI/ML community for electronics design of HEP applications has now reached critical mass. The
demand and need for increasingly more complex AI/ML models require new computing paradigm and design
methodologies that supports analog/hybrid implementations. Recently, we introduced the support of Siemens
Catapult HLS [4] as a backend of hls4ml to target specifically the ASIC flow. The significance for the industry
of our framework has brought us to collaborate with Siemens EDA to release Catapult AI NN [5].
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