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Abstract—Next-generation semiconductor hardware technolo-
gies and system integration serve as the physical foundation in the
pursuit of ubiquitous machine intelligence, with unprecedented
requirements in energy efficiency, performance, cost effectiveness,
and security. Here, we provide an overview of emerging technolo-
gies with an emphasis on 3D system integration, and discuss on
cross-layer designs for memory-centric computing in the 3D era.

Index Terms—emerging device technologies, 3D integrated sys-
tems, memory-centric computing, artificial intelligence hardware.

I. INTRODUCTION

Artificial intelligence is revolutionizing a broad spectrum
of applications to address societal needs from computing
to healthcare, with impact on global infrastructure across
diverse sectors. Energy efficiency, carbon footprint, and privacy
considerations [1] are rising as we continue to develop and
deploy large and diverse artificial intelligence (AI) models
across domains. The next-generation computing hardware
must deliver drastic improvements and new functionalities. On
the one hand, the historical density trends of semiconductor
technologies, including logic, memory, and interconnect, show
orders of magnitude of density up-scaling over nearly five
decades [2], [3]. On the other hand, however, siloed research
within traditional boundaries becomes insufficient. We usher in
a new era where orchestrating a multitude of emerging device
technologies with various 3D system integration schemes is
needed to unlock domain-specific, cross-layer designs meeting
ever-increasing application demands (Fig. 1).

II. EMERGING TECHNOLOGY LANDSCAPE IN 3D ERA

A. System Integration as a Platform Technology

The system-level integration of dedicated component tech-
nologies provides a path for scaling and customization of
any computing system. With the diminishing returns of two-
dimensional down-scaling [4], [5], breaking the single-die limit
and embracing the heterogeneity with the third dimension
become crucial for meeting diverse design targets with im-
proved cost effectiveness [6]–[8]. Manufacturing/integration
of 2.5D/3D chiplets is now considered a critical ‘platform
technology’ to support modular, flexible, and diverse designs
in a full system with enhanced and enriched functionalities.
The heterogeneous nature beyond conventional silicon is
derived from several driving factors in addition to costs.

First, enabling machine intelligence from edge to cloud poses
disparate requirements for logic nodes, memory types, and/or
specialty devices to be integrated in different ways unattainable
on the conventional 2D chips. Second, the ‘mix-and-match’
feature allows designers to partition a system with different
architectural options while exploiting the unique properties
of underlying device technologies. For substrate interconnect
fabrics, Si interposers or wafer-level fan-out layers are used
in 2.5D/3D chiplets [7], [9]. For the inter-layer connections
with the vertical stacking, process technologies including
micro-bumps, through-silicon vias (TSV), hybrid bonding,
and monolithic inter-layer vias (ILV), have been evolving
with diverse characteristics (pitch size and density, reliability,
parasitics, etc.) to deliver different power-performance-area-cost
(PPAC) envelopes.

B. CMOS + X: Technology Enablers

The 2.5D/3D system integration platform makes various
emerging device technologies promising not merely as ‘re-
placements’ but rather as ‘enablers’ for new architectures not
readily available in conventional 2D designs. This is achieved
through integration, aggregation and assembly of these evolving
technologies along with silicon CMOS foundation to either
augment or re-architect today’s systems. Commonly referred
to as ‘CMOS + X’, such technology integration can span
several device categories, and can be manufactured in sequen-
tial/monolithic, heterogeneous, or a hybrid fashion, depending
on the granularity requirements of dies/layers/circuits. For
intelligent systems requiring end-to-end functionalities at the
edge, silicon CMOS logic may be integrated with memories,
sensors, actuators, RF/mm-wave, energy harvesting and power
electronics. Emerging technologies in spintronics, photonics, or
even quantum computing may even reside in a heterogeneous
system with hybrid data representations.

Figure 1 illustrates the technology landscape with an example
where a 3D stacked chip as part of a larger integrated/packaged
system may integrate multiple logic and memory technologies
in the back-end-of-line (BEOL) processes. The 3D layers
may be fabricated in a BEOL process flow (under low-
temperature processing) or bonded at die/wafer level if mixed-
node silicon CMOS is needed. Dense on-chip memories [10],
highly-scaled 2D-semiconductor FETs [11], and ultra-low-
leakage oxide-semiconductor transistors [12] together serve
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Fig. 1. Overview of the emerging technology landscape in the 3D era towards. Energy-efficient, functionally-enriched computing systems that are closely
designed with both application and technology characteristics in mind are key to unlocking future machine intelligence.

as ‘domain-specific technologies’ (DST) [3] offering a vast
design space, where high-bandwidth, high-capacity, and energy-
efficient architectures can be identified owing to the unique
device characteristics and inter-connectivity that do not exist in
conventional 2D Si-only systems. The BEOL integration and
potentially stacking of nanosheets made of low-dimensional
materials as well as nanoscale transistors made of wide-bandgap
oxide semiconductors provide new scaling pathways, and may
be utilized to construct new functional kernels beyond logic
[13], [14]. 3D integration also exploits the benefits of dense
on-chip memories beyond SRAM [6], with various genres such
as resistive RAM (RRAM), phase change memory (PCM),
magnetic RAM (MRAM), and ferroelectric FET (FeFET),
which naturally lead to possibilities of architecting the 3D
systems in the memory-centric fashion for data-intensive
applications.

III. MEMORY-CENTRIC COMPUTING

The rich connectivity through 3D system integration opens
up new opportunities for memory-centric computing: cross-
layer co-designs can be realized by exposing and connect-
ing the unique properties of emerging technologies at the
device and circuit levels, to the diverse algorithm needs and
characteristics. A recent example demonstrated on-chip one-
shot learning leveraging cross-layer design and integration
of RRAM and silicon CMOS [15]. As broadly illustrated in
Fig. 1, heterogeneous integration allows partitioning workloads
to combined near-memory/in-memory compute macros [16],
[17]. With modular and flexible architectures, it is promising
to further explore the synergistic mix-and-match of emerging
computational paradigms, such as neuromorphic computing
[18], probabilistic computing [19], and hyperdimensional
computing [20], ultimately leading towards efficient neuro-
symbolic AI systems.
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