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1. Introduction

First coined by Carver Mead in 1990 [1], the term ‘neuromor-
phic computing’ refers to a computing paradigm inspired by 
the cognitive functionality of human brain. In today’s data-
centric world, where some of the most useful computing tasks 
are to extract meaningful information from massive amounts 
of unstructured data, neuromorphic computing can provide 
low-energy high throughput computing. The challenge in 
data-centric intelligent computing with the conventional com-
puting architecture lies in the energy and latency bottleneck 

of off-chip memory access (i.e. ‘memory wall’) which do not 
scale down with the scaling of the technology node [2]. To 
overcome this problem, new in-memory computing paradigm 
has been proposed [3–13] for accelerating deep neural net-
works (DNNs) used in data-centric computing. In-memory 
computing can utilize certain properties of the emerging non-
volatile memory (NVM) devices such as gradual switching of 
resistance values with constant voltage pulse train. Besides 
application-oriented accelerator hardware for neural networks 
(NNs), neuromorphic computing may also aim at emulat-
ing brain-like learning behavior (e.g. spike timing dependent 
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plasticity (STDP)) in electronic systems. Conventional hard-
wares like CPUs and GPUs that emulate brain-like function-
ality is not energy efficient [14]. As an alternative, resistive 
memory as synaptic connection between two neurons is 
promising for brain-inspired computing. Such non-volatile 
memories with multiple levels of resistance states can be eas-
ily integrated on-chip that can be used as an analog weight 
storage reducing the memory access overhead. Alternatively, 
it can facilitate certain processing tasks to be performed in 
memory resulting in further reduction of memory access over-
head at lower energy cost [15].

Analog-programmable NVM devices such as resistive 
RAM (RRAM), conductive bridging RAM (CBRAM), phase 
change memory (PCM), magnetic RAM (STT-MRAM) lie 
at the heart of such neuromorphic computing devices. A fun-
damental device element having resistive memory, termed 
as ‘memristor’, has been theorized by Chua et al [16]. Later 
Strukov et  al proposed that Pt/TiO2−x/Pt resistive switching 
devices are the physical embodiment of memristors [17]. 
Although these works had significant impact on the field 
of NVM devices for neuromorphic computing, later it was 
shown that the typical resistive memory devices (e.g. RRAM, 
CBRAM, PCRAM) are not equivalent to the memristors 
with respect to its working principle [18] theorized by Chua 
et al [16]. NVM devices were originally developed as digital 
memories which could be used as on-chip memory or non-
volatile data storage. However, one important capability of 
these devices is the multi-bit capacity where instead of two 
resistance levels, multiple levels can be encoded to multi-bit 
information. This gradual switching of the resistance levels in 
these devices are the key to neuromorphic applications. While 
extensive reviews of the emerging NVM devices for storage-
class memory application exist in the literature, a compre-
hensive review of the devices and materials requirements and 
possible trade-offs for neuromorphic application is missing. 
Note that resistive memory devices based on organic materials 
fall into a different class of devices suitable for neuromorphic 
computing. These devices are still not matured enough to be 
readily available for commercial technology, yet they show 
promising characteristics like excellent capability of analog 
tuning, linearity in conductance and extremely low energy 
for switching. Detailed review of the state-of-the-art of such 
devices is presented elsewhere [19] and is out of scope for 
this paper. Hence, the goal of this paper is to present a review 
of inorganic materials based NVM devices for neuromorphic 
application. Two similar yet broad reviews on the relevant 
topic were done by Burr et  al [20] and Yu et  al [21]. This 
review is more focused towards device trade-offs for hardware 
artificial neural networks (ANNs) exploiting in-memory com-
puting principles.

The paper is organized in three main sections. First, we 
explain the challenges of state-of-the-art hardware accelera-
tors present in literature and show how NVM devices could be 
useful in such systems. Then we provide a review of the vari-
ous NVM technologies that have already been demonstrated 
for this application. Finally, we discuss the possible device 
trade-offs in designing neuromorphic hardware.

2. Overview of neuromorphic computing

Neuromorphic computing can be broadly classified into two 
categories: (a) biology based models/algorithms which are 
based on studying the learning and inference process of the 
human brain and emulating those functionalities in hardware 
and (b) ANNs which are algorithms to solve machine learning 
problems inspired by the brain to some extent (network layers 
are constructed by the connections between neurons termed 
as synapses) but does not necessarily have a direct correla-
tion with brain functionality. The human brain consists of neu-
rons which are interconnected by a highly complex network 
of synapses. Each neuron is connected to multiple neurons 
through synapses. Neurons generate action potentials (spikes) 
that are transmitted to the other connected neurons through 
synapses. The communication between the neurons through 
spiking signals results in the modification of synaptic con-
nection strength. This synaptic strength modulation forms the 
basis for learning that can be emulated in hardware (class (a)). 
For example, one such learning paradigm is known as STDP 
[22], where each neuron integrates all the incoming action 
potential and when the integrated signal exceeds a certain 
threshold, it fires a spiking pulse that contributes to the learn-
ing by changing the synaptic connection strength based on the 
timing of pre-syanptic and post-synaptic pulse. STDP can be 
a ‘local’ learning mechanism which is only applicable in emu-
lating brain-like behavior. Implementation of such learning 
models in hardware originating directly from understanding 
the brain’s learning mechanism has been studied and reviewed 
extensively by Kuzum et al [15]. STDPs can also be viewed 
as a ‘global’ learning mechanism that requires weight updat-
ing (via for instance error backpropagation) for neuromorphic 
computing applications. Our discussion in this paper will be 
focused on hardware acceleration of ANNs using emerging 
NVM devices. The ANNs are inspired from the human brain’s 
neural connectivity, yet do not correlerate to any specific bio-
logical learning model. Figure  1 shows the development of 
neuromorphic computing and its categories. This paper will 
focus on the highlighted square of the design paradigm.

3. Hardware acceleration for NN

DNNs are a class of ANNs that features a considerable 
increase in the network depth to build richer representations 
of the input data. DNNs have been gaining great momentum 
for tackling large-scale, perceptional tasks such as computer 
vision and natural language understanding. This secion picks 
DNN as a case study, among many variants of ANNs, to illus-
trate the close interaction between the development of hard-
ware primitives and NNs. DNNs have been benefiting from 
both the availability of big data (large amount of multi-media 
data for model training) and the large performance improve-
ment of computing hardware in the past decade. Recent devel-
opment of DNNs features an increase in both the model size 
(defined as the amount of static weights after training of a NN) 
and computational complexity (feedforward and backward) 
[23–27], to meet the requirements of demanding tasks such 
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as video processing [28]. Many recent general-purpose hard-
ware platforms (e.g. CPU and GPU) employ special features 
such as vector instruction [29] and mixed-precision operations 
[30] to improve parallelism for DNN inference and training. 
However, the memory hiararchy design of these general-pur-
pose architectures is not specifically designed to leverage the 
predictable dataflow and potential data reuse of DNN process-
ing. Therefore, a large portion of memory access goes to the 
slower and more energy-consuming levels of memory hiara-
rchy (e.g. one off-chip DRAM main memory consumes much 
more energy than local and small register files per access), 
limiting the compute throughput and energy efficiency of 
DNN processing. To reduce these expensive memory access, 
hardware accelerators for DNNs are designed to employ more 
fine-grained local memory hiararchy and more specialized 
dataflow design, which improves the energy efficiency and 
throughput while maintaining DNN’s inference accuracy. 
Modern DNNs typically consist of convolutional (CONV) 
layers and fully-connected (FC) layers as trainable layers 
(containing weight parameters), interwoven with pre-defined 
non-linear activation, normalization, pooling and regulariza-
tion layers that are typically not compute-intensive. However, 
both CONV and FC layers require intensive multiply-and-
accumulate (MAC) operations during both feedforward and 
back-propagation computation. These MAC operations per-
formed for millions of weight parameters in a DNN impose 
a stringent requirement on the efficiency of memory access. 
Therefore, a common target of the state-of-the-art DNN accel-
erator designs are two-fold: accelerating the MAC operations 
while minimizing the energy cost of data movement. In this 
section, we will first review the design and optimization meth-
odologies of DNN accelerators. Then, the architectural impli-
cations for the use of new memory technologies in this context 
will be discussed.

3.1. Design and optimization methodologies

Modern DNNs are both computation-intensive and memory-
intensive. As seen in some popular DNN architectures, the 
total number of weights is in the order of tens or hundreds 
of millions, while the total number of MAC operations dur-
ing inference can be two to three orders of magnitude larger 
[23, 24, 26, 27]. For instance, a ResNet-50 network trained 
on the ImageNet dataset can contain over 20 M weights and 
require about 4G MAC operations [23]. Performing inference 
for a batch of 16 images using ResNet-50 on two Intel Xeon 
E5-2630 v3 processors takes more than 6.6 s to complete [31]. 
Associated with every single MAC operation during the infer-
ence phase of a DNN, there are several memory accesses on 
weight data, activation data, and partial-sum data before and 
after the computation. These memory accesses can be rather 
inefficient with general-purpose architectures as a substanti al 
portion goes to relatively slow and energy-hungry, off-chip 
DRAM. Therefore, to address this memory wall issue and to 
minimize the data fetching/movement costs, the first meth-
odology that DNN accelerators have taken is to use spatial 
architectures, which consist of distributed arithmetic logic 
units (ALUs), localized (yet capacity-limited) memories 
(e.g. register files, local buffers), and an on-chip network that 
enables direct communication between ALUs. Some of the 
early examples include neuFlow [32] and DianNao [33]. The 
former design uses local registers to store frequently-accessed 
weights for each MAC unit, while the latter uses scratchpad 
SRAMs to store weights and intermediate inputs/outputs. In 
addition to minimizing the energy of reading weights from 
memories, ShiDianNao (one of the successors of DianNao) 
[34] is designed to minimize memory write accesses by group-
ing the MAC outputs from adjacent ALUs before writing back 
to SRAMs. The strategies employed in [32–34] can be sum-
marized as minimizing read and write accesses by handling, 

Figure 1. Neuromorphic computing paradigm. In each box, already implemented examples are given along with the NVM device 
technology utilized (PCM  =  phase change memory, RRAM  =  resistive RAM, CBRAM  =  conductive bridging RAM). The region 
highlighted in yellow is the topic highlighted in this paper. This figure is adapted from [80, 113, 114, 142–152].
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caching, and processing reusable data in a DNN computation 
flow, and can be seen in several other reports of DNN acceler-
ators as well [35, 36]. Most recently, Eyeriss combined these 
two strategies to further improve the data reuse, by efficiently 
compiling and mapping DNN parameters from DRAM into 
scratchpad SRAMs and local registers [7]. As NNs can be 
viewed as arbitrary function approximators from an algorithm 
perspective, weight precision reduction and network pruning 
may be used to compress large DNN models and yield smaller 
models that can better fit hardware constraints during deploy-
ment [6]. Some DNN accelerator designs have exploited this 
methodology by mapping compressed DNN models to reduce 
energy and area costs of high-precision arithmetic. As a result, 
these compressed models typically require less storage and 
compute resources on hardware. For example, EIE [6] and 
SCNN [11] are inference accelerators that use network prun-
ing technique, which takes redundant weight parameters and 
set them to zero. EIE is designed to perform computation on 
the sparse representation after pruning FC layers, while SCNN 
focuses such sparse processing on CONV layers. Google’s™ 
tensor processing unit (TPU) reduces the precision to 8-b 
integer arithmetic [37], while some other accelerators explore 
even less number of bits to improve throughput and energy 
efficiency, including ternary/binary representations [3, 38].

3.2. Architectural implications for memory technologies

Present accelerator designs put a central emphasis on the 
memory hierachy optimization and its interplay with on-chip 
computation resources. However, the ‘memory bottleneck’ in 
modern DNNs may not be fully addressed by the aforemen-
tioned acceleration architectures alone. In fact, memory access 
remains to be the bottleneck for many DNN inference work-
loads when deployed on acceleartor hardware, especially for 
networks mainly consisting of FC layers, such as multilayer 
perceptron (MLP) and long short-term memory (LSTM) [37]. 
Moreover, one can expect future DNNs to grow rapidly in 
network depth and computational complexity. As an example, 
DNNs with convolutional layers for image applications have 
grown from eight layers (AlexNet [24]) to over 100 layers 
(ResNet [23]) to be able to handle rich information in natural 
images. The state-of-the-art YOLO network [39] for real-time 
object detection involves computations on many small grids 
of a single image or video frame, which implies the grow-
ing need for more data-intensive, fine-grained multi-media 
processing. Thus, in the future, real-time processing of high-
resolution videos would require even more hardware comput-
ing capabilities to handle parallel processing with large DNNs 
and the concurrent memory accesses with as little bandwidth 
limitation as possible. Contemporary accelerator designs still 
face the memory bandwidth and capacity wall, as the typical 
on-chip registers and SRAM buffers can only provide KB- to 
MB-scale data memory [7, 33, 37], which is much smaller 
than off-chip DRAM capacity. This has driven several accel-
erator works towards using alternative memory technologies. 
For instance, DaDianNao [5], another successor of DianNao, 
uses 36-MB/chip embedded DRAM (eDRAM) to provide 

slightly larger on-chip storage capacity compared to SRAM. 
However, such approach may not have good scalability, due to 
the added cost of eDRAM technology and limited benefits for 
on-chip storage capacity. For state-of-the-art node (14 nm), in 
high volume manufacturing ~70% array efficiency has been 
demonstrated for on-chip SRAM [40]. If ~80% of the chip is 
SRAM macros in futuristic nodes (~7 nm) where SRAM bit 
cell area is 0.027 µm2 [41] a typical die (815 mm2—NVIDIA 
V100 [42]) could accommodate ~2 GB of SRAM in future. 
2  GB of SRAM sounds sufficient to hold most of today’s 
DNN weights on-chip, however, in this case, the standby leak-
age of the SRAM array may dominate the entire chip’s power 
comsumption, which makes it unpractical. Considering the 
memory wall faced by the modern DNNs, emerging memory 
technologies may play an important and unique role. The can-
didates that are being actively investigated by the device and 
material communities include PCM [43, 44], RRAM [45, 46], 
CBRAM [47], and STT-MRAM [48]. As these technologies 
can potentially offer up to tera-bytes of on-chip data storage 
with a wide range of energy-delay optimization opportuni-
ties, they may complement SRAM for more efficient DNN 
inference acceleration. Architecture studies, through simula-
tions, have shown that RRAM crossbar arrays can provide 
MAC processing capability and on-chip data storage at the 
same time [8, 9]. These studies use the structual parallelism 
and current summation properties, but do not fully exploit the 
analog programmable properties of resistive-type non-volatile 
memories. Thus, there is an even larger design space with 
emerging memory technologies that can be exploited as a key 
compute and storage component for efficient hardware imple-
mentations of DNNs. The following sections will address this 
topic in detail.

3.3. NVM as analog synaptic weights in NNs

A possible application of emerging NVM devices is to serve 
as in-memory computing element where multi-level resistance 
response of an NVM can store the analog synaptic weights of 
a DNN on-chip. After reading these analog weights, conven-
tional hardwares can perform the typical arithmetic operation. 
These schemes bring the memory closer to the computing 
element but the computation is not done inside the memory. 
In another in-memory computing scheme, a crossbar array 
of NVM devices can perform the MAC operation at a lower 
energy cost when the input vector is encoded as an analog 
voltage and the weight matrix is encoded as analog resistance 
(conductance) values stored in the memory devices. Figure 2 
shows the typical mathematical abstraction of a single layer 
perceptron. If the input vector is encoded as an analog voltage 
and the weight matrix can be encoded as the conductance val-
ues in a resistive memory array (figure 2(b)), the output cur rent 
represents the MAC operation. The ability of the NVM devices 
like RRAM, PCM, CBRAM to change its resistance values 
gradually as a function of the applied voltage pulse across its 
electrode is the key to performing analog in-memory MAC 
operation (figure 2). However, if the NVM device has non-lin-
ear I–V curve (which is typically the case in higher resistance 
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state), using analog voltage as input will cause large error due 
to the variable conductance with the read voltage. A solution 
is to use an identical pulse train as input where the pulse num-
ber represents the input value. Another solution is to encode 
the input to adapt the NVM’s non-linearity. To the best of our 
knowledge, this has yet to be studied in detail. The weight 
update can be written as a sum of outer product between two 
vectors in many machine learning problems (e.g. stochastic 
gradient descent, contrastive divergence training of a restricted 
Boltzmann machine). During the update, write pulses are 
applied simultaneously across multiple rows and columns. The 
NVM cells are updated in parallel, with resistance change as 
a function of the voltages at its corresponding row and col-
umn. Different training algorithms exhibit different immu-
nity to weight update non-idealities, and therefore should be 
studied on a per-case basis. The weight update non-idealities 
can affect both final training results and training convergence 
speed. Usually, the deterministic effects such as weight update 
non-linearity and dynamic range have more impact on the final 
training accuracy. Stochastic effects such as device-to-device 
and cycle-to-cycle variations (when not too large) sometimes 
exhibit correlation with convergence speed. Section 4 provides 
a literature review of the current state-of-the-art NVM devices 
used for neuromorphic hardwares in applications ranging from 
biology based learning models to conventional machine learn-
ing algorithms solved using NNs. Sections 5 and 6 provide a 
more focused overview of the device-level trade-offs required 
for hardware acceleration of NN architectures using analog in-
memory MAC operation.

4. Review of the state-of-the-art devices

This section provides an overview of the emerging NVM tech-
nologies that has been utilized as analog synaptic weights in 

NNs. Inferencing and online learning requires separate set of 
characteristics from the NVM devices and they will be dis-
cussed separately. The desired properties for a NVM device 
to be used as analog synaptic weight in NNs facilitating MAC 
operation for inferencing are—large dynamic range of resist-
ance with high (100 kΩ–1 MΩ) value of low resistance state 
(LRS), high dynamic range of resistance change when pro-
grammed with identical pulses in both SET and RESET pro-
cess, large numbers of distinguishable resistance levels and 
CMOS logic compatible switching voltage. For online learn-
ing, where the weights are updated often, retention is not a big 
concern but high endurance is desired along with nanoscale 
switching. For offline inference, where weight is updated 
occasionally using off-chip learning, good retention charac-
teristics is also required. Any single device has yet to dem-
onstrate all the desired properties. In this paper, we provide a 
brief review of the three most promising NVM technologies 
as they are being utilized in neuromorphic applications.

4.1. Resistive random access memory (RRAM)

Among different emerging NVM technolgies, the main 
advantages of using RRAM for neuromorphic applications, 
specially for MAC operation for NNs are scalability, moder-
ate switching speed, and low energy consumption. The main 
challenge for RRAM is to achieve CMOS compatible switch-
ing voltage and high endurance. Moreover, the switching, 
specially the SET operation, is abrupt and makes it difficult 
to achieve gradual resistivity control by repeated application 
of the same programming pulse. While it is possible to get 
gradual RESET operation, RRAMs suffer from non-linearity 
in switching both during SET and RESET. Also, asymme-
try is observed while switching between SET to RESET and 
RESET to SET. This inherent non-linearity and asymmetry 

Figure 2. (a) Single layer perceptron with four inputs and two outputs. (b) General computational form for single layer ANN. (c) NVM 
crossbar array for realizing the matrix-vector multiplication shown in (b). Here, T  =  transistor, S  =  selector, R  =  resistor.
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in the switching of these devices have a negative impact on 
the accuracy of the NN [49–51]. The other challenging issue 
in designing NN with RRAM is device-to-device and cycle-
to-cycle variation. While some cycle-to-cycle variation can 
be tolerated in inferencing, it is good to have low device-to-
device variation for large arrays. The trade-off between dif-
ferent design constraints and how these impacts the learning 
and inference accuracy will be discussed in detail in section 5. 
This section  provides an overview of the state-of-the-art 
RRAM devices utilized for NN application.

Metal oxide RRAM is a simple metal-insulator-metal 
(MIM) structure, where the insulator layer is typically a 
transition metal oxide. The metal oxide layer can be a single 
switching layer or be composed of multiple layers where the 
interfacial layers are engineered to have the desired proper-
ties. Metal oxide RRAMs are also known as valence change 
memory (VCM), because the resistive switching happens 
because of the movement of oxygen vacancy defects. These 
are anion-based memory devices. The other type of RRAM 
is a cation-based memory device where switching happens 
because of metal cations diffusion from the anode metal con-
tacts to the solid electrolytes, also known as electrochemical 
metallization (ECM) cells, will be discussed in the next sub-
section. These types of cells where the metal cations form a 
conductive bridge type filament are also termed as ‘conduc-
tive bridging random access memory (CBRAM)’.

The physics of RRAM devices have been explained by a 
variety of switching mechanisms, and they have been inves-
tigated extensively by the research community [52–58]. The 
details of the switching mechanism are still an active area 
of research. The most common switching mechanism is 

filamentary switching. Here, the set process from the high 
resistance state (HRS) of the pristine oxide involves soft 
breakdown of the dielectric material creating a filamentary 
current conduction path of oxygen vacancy resulting in LRS. 
The reset process is the switching of the LRS state to the HRS 
state by recombination of oxygen vacancies with oxygen ions 
migrated from the electrode/oxide interfacial reservoir upon 
reversing the bias conditions of the eletrodes as compared 
to the set state. Figure 3 shows the schematic of the resistive 
switching mechanism for a binary oxide-RRAM.

For RRAMs to be used in NNs as weight storage, it is 
often desirable to be able to store analog values, essentially 
an extreme case of multi-bit operation of a memory, akin to 
a multi-bit cell (MLC) with many more levels than currently 
implemented (typically 2- and 3-bit per cell is used for digital 
non-volatile memories). Numerous RRAM oxide mat erials 
have been shown to be capable of multi-bit operation, e.g. 
CuxO [59], TiOx [60], HfOx [61], WOx [62] and TaOx [63]. 
One of the early works that demonstrated multi-bit operation 
was for a TiOx RRAM [60] where five levels of resistance 
states was achieved by varying the amplitude of 5 ns voltage 
pulses. The data retention was 256 h at 85 °C but the endur-
ance was only 2  ×  106 cycles. Lee et al has also shown five 
resistance levels without verification for TiN/TiOx/HfOx/TiN 
structure [61]. For the set process multi-level LRS is obtained 
by changing the set current compliance which modulates the 
filament diameter or the number of filaments. This compli-
ance dependent multi-level resistance states that results from 
the modulation of filament size is explained in detail by Chae 
et al [64] and Zhao et al [65]. For the reset process, multi-level 
HRS is obtained by controlling the reset stop voltage. Using Ti 

Figure 3. Schematic illustration of the switching process in the simple binary metal-oxide RRAM. [153] © 2012. With permission of 
Springer.
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as the oxygen scavenging layer, this structure provides moder-
ately fast operation at 5 ns. The retention is 10 years at 200 °C.  
While the endurance of 106 cycles is enough for training a 
small dataset as MNIST [66], it is not sufficient for large scale 
networks with many training examples. Lee et  al reported 
one of the highest endurance (1012 cycles at 10 ns switching 
speed) in a memory device made from asymmetric Ta2O5−x/
TaO2−x bilayer structure [67]. Controlling the resistance of the 
base layer TaO2−x is a means to control the device resistance. 
However, the switching voltage is rather high (Vset  =  −4.5 V,  
Vreset  =  +6 V at 10 ns pulse) and multi-level switching is not 
reported in this work. Nitrogen doping of TaOx switching 
material has been shown to improve multi-bit operation by 
reducing both the switching voltage and resistance variabil-
ity [68]. Misha et al studied the effect of N doping in TaOx 

and reported a device with eight levels of resistive switching 
[68]. Figure 4 shows the mechanism of nitrogen incorporation 
in the oxygen vacancy which confines the filament. Nitrogen 
doping of TaOx film is reported to reduce the switching varia-
bility of voltage and resistance by negating the excess conduc-
tion path. This results in the capture of oxygen ion by nitrogen 
during the bias application that forms the filament confined 
in a localized region (figure 4(c)). This reduced variability in 
the filament formation (figure 4(d)) for different compliance 
current results in higher levels of resistance switching, where 
the optimized doping results in eight levels of switching with 
uniform switching among 50 cycles per level.

The SET operation in filamentary RRAM is inherently 
abrupt in nature. This results in non-linear conductivity switch-
ing with the number of switching pulses, which has a negative 

Figure 4. (a)–(c) The schematic representation to describe the denser controlled filament formation by nitrogen incorporation. (d) Analysis 
of the effect of nitrogen doping on the device of different nitrogen amounts with the function of non-linearity and variability in 30 µA 
compliance current to set up the guideline for 3-bit MLC storage feasibility of N-TaOx based RRAM device. Reproduced with permission 
from [68].

Figure 5. (a) SET and RESET characteristics of the HfO2 1T-1R array with identical pulses. The conductance change as a function of the 
number of set/reset pulses is shown. Increment and decrement of the conductance was determined by either a higher voltage or a longer 
PW. (b) Schematic illustration of an analog switching behavior in the AlOx/HfO2 RRAM. (c) Comparison of the SET/RESET switching 
obtained from the HfO2 and AlOx/HfO2 RRAM devices. In the AlOx/HfO2 device, potentiation and depression behavior are obtained by 
applying identical pulses with 0.9 V and 1 V of 100 µs PW, respectively. © 2016 IEEE. Reprinted, with permission, from [69].
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impact on the accuracy of machine learning task. RESET on 
the other hand is more gradual as shown in figure  5(a) for 
the TiN (BE)/HfO2/Ti/TiN (TE) device stack [69]. A barrier 
layer on the bottom electrode of this device is inserted to avoid 
an abrupt switching, which resulted in a linear gradual SET/
RESET process. Figure 5(c) shows the comparative synaptic 
behavior observed from a TiN (BE)/HfO2/Ti/TiN (TE) and an 
Al (BE)/AlOx/HfO2/Ti/TiN (TE) device. In the bilayer sys-
tem, there is a difference in oxygen vacancy mobility between 
two layers. During the RESET process, the dissolution of the 
vacancy is limited by the AlOx layer because of the lower 
mobility of oxygen vacancy. Instead the conductance of the 
conductive filament (CF) is modulated by the width of the fila-
ment (figure 5(b)). This results in gradual resistive switching 
at the expense of low on/off ratio because the width modula-
tion of the filament changes the resistivity according to ohms 
law compared to the case of tunnel barrier modulation in the 
length direction, which has an exponential relation with the 
current. Pattern recognition accuracy increases from 20% for 
HfO2 device to close to 90% for the bilayer device.

Wu et  al proposes that abrupt switching in HfOx can be 
explained by the positive feedback of electric field on the for-
mation of CF which accelerates the formation of one single 

dominant CF [70]. The formation and rupture of one dominant 
filament contributes to the total conductance change by a sig-
nificant amount resulting in an abrupt switching behavior. A 
transition from the abrupt switching to the analog switching is 
found at higher temperature by confining heat in the switching 
layer using a thermal enhanced layer (TEL) [70]. Confining 
heat in the switching layer allows the oxygen vacancies to 
redistribute themselves uniformly. This results in the forma-
tion of multiple weak CFs instead of one dominant filament. 
This results in a better analog switching behavior as shown in 
figure 6, where more than ten times of switching window is 
demonstrated for 50 ns switching pulse.

Amorphous Si (a-Si) barrier layer has been shown to work 
as an oxygen scavenging layer introducing significant oxygen 
vacancy in the switching layer (TiO2) [71]. This results in 
analog non-filamentary switching with better device to device 
uniformity than AlOx barrier layer. However, the switching 
voltage is relatively large (~6 V) because of relatively thicker 
a-Si which causes a large voltage drop across it.

Besides material innovation for improved analog switch-
ing, 3D device architecture is another important research 
direction because it provides the advantage of area scaling and 
increased functionality. 3D vertical RRAM (VRRAM) has 

Figure 6. (a) Typical DC-IV of HfOx/TEL RRAM at room temperature. Analog switching is improved due to TEL layer. (b) Conductance 
of HfOx/TEL RRAM changes with number of identical SET pulses at RT. (c) Conductance of HfOx/TEL RRAM changes with number of 
identical RESET pulses at RT. (d) Average conductance change during SET and RESET of 256 HfOx/TEL RRAM devices in the array.  
© 2017 IEEE. Reprinted, with permission, from [70].
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been demonstrated by several groups (typical structure shown 
in figure 7) [72–77]. Using 3D VRRAM, Li et al introduced a 
brain-inspired computational framework capable of one-shot 
learning known as hyperdimensional (HD) computing [78]. 
Due to the energy efficient VRRAM cells and dense connec-
tivity, this architecture reduces total energy consumption by 
52.2% having 412 times less area compared to a low-power 
digital design using registers as memory. Moreover, this archi-
tecture is resilient to RRAM endurance failure because of 
device-architecture co-optimization.

RRAM arrays have been used successfully for various 
machine learning tasks. Park et  al proposed a PCMO (the 
device stack Pt/AlOx/TiNx/Pr0.7Ca0.3MnO3/Pt from top to bot-
tom) based RRAM synaptic device which exhibits the neces-
sary gradual and symmetric conductance change [79]. Using 
a single layer perceptron of 192 synapses, this device array 
can learn and recognize human thought pattern corre sponding 
to three vowels from EEG signals. Prezioso et  al demon-
strated transistor-free (1R type) metal oxide RRAM device 
array crossbars to allow integrated operation of NNs [80]. 
The bilayer device stack Pt/Ti/TiO2−x/Al2O3/Pt is used for 
an integrated crossbar array of 12  ×  12 devices. This single 
layer perceptron network can be taught to perform the perfect 
classification of 3  ×  3-pixel black and white images into three 
classes. Gao et al demonstrated a convolution kernel opera-
tion (i.e. edge detection) on a MNIST image using a 12  ×  12 
crossbar array with HfOx RRAM [81]. A recent work by Yao 
et al demonstrated grey-scale human face classification using 
128  ×  8 array with parallel on-line training [82]. The network 
designed with optimized metal oxide device stack of TiN/
TaOx/HfAly Ox/TiN consumes 1000 times less energy than an 
implementation of the same network using an Intel Xeon Phi 
processor with an off-chip weight storage. While these dem-
onstrations use NVM as the synaptic device, all of these use 

circuitry external to the NVM (either in software or in hard-
ware). None of these have NVM integrated with the peripheral 
control circuits.

4.2. Conductive bridging random access memory (CBRAM)

Filamentary resistive switching devices where the filament is 
composed of metal cations instead of oxygen vacancies are 
termed as ‘conductive bridging RAM’ or CBRAM. The struc-
ture of CBRAM devices consists of one electrochemically 
active electrode (e.g. Ag or Cu that is oxidized easily under an 
external positive bias) and one electrochemically inert elec-
trode (e.g. Pt, Ir, Au, W, TiN). The switching mat erial between 
these two electrodes can be a solid electrolyte (chalcogenides) 
or an oxide material. The first CBRAM-like switching device 
was proposed by Hirose et al [83] in 1976 where switching 
occurred using a Ag dendrite in a Ag doped As2S3 film in a 
Ag/As2S3/Mo structure. Germanium (Ge) based chalcogen-
ide materials (GeSex [84], GeS2 [85], GeTe [86]) have been 
widely studied as CBRAM active switching material where 
Cu and Ag ions show high mobility in the chalcogenide 
materials. The basic mechanism of switching in CBRAM 
involves electrochemical reaction at the active anode metal 
(Ag or Cu) which allows metal to form cations. These cations 
drift through the solid electrolyte switching layer under the 
electric field and reduces to metal atoms near the inert elec-
trodes. This process forms a metallic conductive bridge from 
anode to cathode when the device switches from HRS to LRS 
(SET), hence the name CBRAM. By changing the polarity of 
the voltage, an electrochemical dissolution of the conductive 
bridge occurs that resets the device from LRS to HRS. The 
growth kin etics depend on the electrode and switching mat-
erials; therefore, it varies from oxide to non-oxide switching 
materials. Besides chalcogenides, oxides are widely used for 

Figure 7. Schematic drawings of (a) 3D X-point™ ReRAM [154], (b) vertical ReRAM. (a) Adapted from [78]. (b) © 2012 IEEE. 
Reprinted, with permission, from [77].
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CBRAM, e.g. SiO2 [87], ZrO2 [88], Ta2O5 [89], GeOx [90], 
TiO2 [91]. Amorphous Si (a-Si) with Ag doping has also been 
reported [92]. CBRAM usually has low switching voltage (<2 
V), fast switching (~ns), high scalability and low power oper-
ation [93, 94]. However, the switching is highly stochastic 
and abrupt in nature. This creates a challenge for MAC opera-
tion in NN where gradual and linear conductivity switching is 
desirable. Also, achieving high endurance and retention is a 
challenge. The main reason for these challenges is the highly 
mobile nature of metal cations for which the diffusion barrier 
is relatively low in the traditional electrolytes. To control Cu 
or Ag diffusion to improve switching uniformity, bilayer mat-
erials, which create additional cation diffusion barrier, have 
been studied, e.g. MoOx/GdOx [95], Ti/TaOx [96], GeSex/TaOx 
[97], Cu–Te/Al2O3 [98], TiW/Al2O3 [99] and so on.

For example, Aratani et al demonstrated  >107 cycle endur-
ance from Cu–Te/GdOx bilayer CBRAM [100]. Four levels 
of conductive switching were obtained by setting the appro-
priate compliance current. Precise control of cation injection 
into the switching layer is the key to improve reliability [100]. 
Besides the use of a bilayer structure, introducing a transistor 
in series can also be an effective solution for controlling cation 
injection. This technique, however, is not suitable for large 
2D cross point architecture that is essential for Kirchoff’s law 

type vector matrix multiplier for NN application. Recently, 
Fujii et al demonstrated that confinement of the area of the 
switching layer in a CBRAM type device is a promising way 
to control Cu injection [101]. Figure 8 shows that when the 
SiO2 switching layer in Cu/SiO2/Pt CBRAM is reduced from 
100 nm to 30 nm in lateral dimension, endurance is improved 
by two orders of magnitude. The improvement in endurance 
originates from providing only a limited supply of Cu ions 
during the set operation due to the spatial limitation of the Cu 
top electrode. This prevents excessive Cu ions from moving 
into the SiO2. It is also reported that reducing the Cu electrode 
down to sub-20 nm could improve data retention due to the 
restricted Cu movement within the switching layer.

Using a physical model of the CBRAM, Yu et al showed 
that CBRAMs can emulate the function of a biological syn-
apse, exhibiting STDP behavior, a key observation from 
biology [102]. One interesting alternative to devices with 
deterministic multilevel resistance switching is to use devices 
that show binary switching along with a stochastic-STDP 
learning rule. This alternative is a functional equivalent with 
deterministic multilevel synapses at the system-level [103]. 
Such stochastic binary synapses have been applied to both 
supervised [104] and unsupervised [105] NN. In this scheme, 
stochastic switching in resistive memories makes the SET/

Figure 8. Cycling endurance of the devices with switching layer diameter of 100 nm (a), 50 nm (b), and 30 nm (c). Endurance is improved 
to 104 with scaling down the switching layer area to 30 nm (d). © 2018 IEEE. Reprinted, with permission, from [101].
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RESET process probabilistic. The input and the weights of 
the NN can be converted to a Bernoulli distribution [106] that 
represents the stochastically switched CBRAM. Formation of 
one dominant cation filament where the metals have higher 
diffusivity is the reason for abrupt switching and variability 
in CBRAM.

Besides stochastic switching, analog resistance modulation 
based synaptic device using CBRAM has been shown. Jo et al 
proposed a CBRAM device with co-sputtered Ag and Si layer 
with properly designed Ag/Si mixture ratio gradient that leads 
to the formation of a Ag-rich (high conductivity) and Ag-poor 
(low conductivity) region [92]. Ag nanoparticles are embed-
ded into the Si medium that forms a uniform conduction front 
between Ag-rich and Ag-poor regions. With applied bias, 
this device shows reliable analog switching behavior hav-
ing gradual conductance change with subsequent pulses. The 
analog switching occurs because of the gradual movement 
of incorporated Ag nanoparticles that allows current conduc-
tion through tunneling across Ag nanoparticles as opposed to 
the formation of a continuous metallic filament. Continuous 
conductivity modulation as shown in this work for STDP like 
synaptic operation is also essential for analog weight storage 
for MAC operation in NN application.

To take the advantage of relatively higher reliability from 
vacancy-based RRAM along with low voltage operation 
from CBRAM, Yoon et  al proposed Ag doped Ta2O5 resis-
tive switching device with tantalum (Ta) as the top electrode 
and ruthenium (Ru) as the bottom electrode [107]. This device 
does not operate as the traditional CBRAM since the TE does 

not supply the cation Ag, which remains embedded in the 
oxide. CMOS compatible switching voltage (0.7 V) is reported 
with 5  ×  107 endurance cycle at 100 ns pulse. The device also 
shows 9.936  ×  106 s retention at room temperature and elec-
tro-forming free operation making it one of the most promis-
ing devices for neuromorphic application. Ru as BE plays a 
special role in lowering the switching current and forming free 
operation compared to a Pd BE as shown in figure 9. There is 
no mutual solubility between Ag and Ru, resulting in Ru BE 
repelling Ag atoms away from the BE. This allows Ag to form 
nanoclusters inside Ta2O5 dispersed relatively close to each 
other resulting in conductive tunneling path (CTP) between 
the Ag nanoclusters. Unlike CBRAM, there is no continu-
ous cation filament formed here which keeps it forming free. 
However, in case of Pd BE devices, Ag and Pd can form sin-
gle uniform phase which makes Ag to be attracted to the BE 
and get uniformly distributed. This prevents cluster formation. 
Without the CTP, the switching in Pd BE device is through 
oxygen vacancies and therefore forming is needed. This work 
thus exemplifies the need for interface engineering between 
the electrodes and the switching material to obtain the desired 
switching performance and the reliability.

4.3. Phase change memory (PCM)

Phase change memories (PCM) are a class of NVM devices 
where large differences in electrical resistivity between 
amorphous (high-resistivity) and crystalline (low-resistivity) 
phases of certain materials are utilized to represent memory 

Figure 9. Schematic diagrams illustrate (a) the distributions of Ag ions in the pristine state (equivalent to the HRS) and (b) the LRS (caused by 
the migration of Ag) in Ta/Ta2O5:Ag/Ru device. Schematic diagrams show (c) the pristine state and (d) the forming process (oxygen vacancy 
mediated VCM) in a Ta/Ta2O5:Ag/Pd device. [107] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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states. The phase transformation occurs through Joule-heating 
from the current that drives through the phase change mat-
erial when a voltage pulse is applied. Resistance modulation 
of phase change materials can also occur by applying voltage 
pulses with specific amplitude and duration leading to mul-
tiple sizes of the amorphous region of the device having resist-
ances between fully amorphous and crystalline state. This 
behavior enables multiple resistance level operation of PCM, 
a feature essential for neuromorphic application.

Chalcogenide type materials are widely used in the cur rent 
PCM technology as phase change materials because of its strong 
resistance contrast, fast crystallization and high crystallization 
temperature. More specifically, GST (Ge2Sb2Te5), which is 
located in the pseudo-binary line between GeTe and Sb2Te3 in 
phase diagram, is one of the commonly used mat erials for mem-
ory and synaptic device applications [108]. For PCM devices to 
be used as a synaptic device, high dynamic range (ratio between 
high and LRSs) is desired. Since neuromorphic applications also 
require gradual changes in device resistance with constant volt-
age pulse, SET process is suitable for this, where repetitive pulse 
slowly crystallizes high-resistivity amorphous state resulting in 
a gradual change in resistivity. However, the RESET process is 
quite abrupt since ‘melt and quench’ is required for crystalline 
to amorphous phase transition. Therefore, the SET and RESET 
resistivity switching for PCM is not symmetric.

PCM is one of the most mature NVM technologies and 
therefore has gained a lot of interest from the research com-
munity as an electronic synapse in neuromorphic computing 
systems. Kuzum et  al first demonstrated a single-element 
phase change electronic synapse with the capability of both 
the modulation of the time constant and the realization of 

the different STDP types [109]. Using optical programming, 
Wright et al demonstrated arithmetic operation such as addi-
tion, multiplication, subtraction and division in PCM devices 
[110]. Since amorphization of the phase change material is 
more abrupt and power consuming than crystallization, Suri 
et al proposed a ‘2-PCM’ synapse circuit where each synapse 
is represented by 2 PCM devices connected in complemen-
tary way to the post-synaptic neuron (figure 10) [111]. One 
device implements long-term potentiation (LTP, or increase 
in conductance) and the other device implements long-term 
depression (LTD, or decrease in conductance), which makes 
the STDP learning possible using identical crystallization 
pulses alone. Moreover, the 2-PCM approach also allows us 
to have both the positive and negative weights. Suri et al also 
improved the synaptic characteristics (SET/RESET current 
reduction and increase in the number of resistance states) of 
the standard GST based PCM devices using a thin interfacial 
layer of HfO2 which increases the dynamic switching range by 
improving the crystallization kinetics of the GST film where 
the interfacial layer can lower the activation energy associated 
with crystallization and amorphization [112].

The 2-PCM synapse approach has been used by Burr et al 
in backpropagation training for a three-layer perceptron NN. 
In this network, 164,885 2-PCM synapses were used for 
vector-matrix multiplication [113]. In an experimental dem-
onstration, Eryilmaz et al employed a Hopfield network con-
sisting of 100 synaptic devices and 10 recurrently connected 
neurons for implementation of brain-like associative learn-
ing [114]. Kim et al developed a 64k cell (256  ×  256) PCM 
array with on-chip neuron circuits capable of continuous in 
situ learning where a novel 2T1R (two transistors one resistor) 

Figure 10. Circuit schematic of the ‘2-PCM synapse’. Reproduced with permission from [111].
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circuit performs both leaky integrate-and-fire (LIF) and STDP 
learning model asynchronously [115].

Not only supervised learning, but also unsupervised 
learning has been demonstrated using PCM array. Ambrogio 
et al demonstrated 1T1R PCM synaptic array for unsuper-
vised learning [116]. Using the circuit and pulse scheme 
shown in figure 11, visual pattern recognition with two or 
three fully connected neuromorphic layers has been shown 
with high acc uracy (95.5%). Recently, Sebastian et  al 
reported that an unsupervised machine-learning algorithm, 
running on one million PCM devices, successfully found 
temporal correlations in unknown data streams [117]. This 
work uses the linear resistance switching property of the 
multi-level memory device to solve linear differential equa-
tion. These devices utilize PCM crystallization dynamics to 
perform both computation (detecting temporal correlations 
between event-based data streams) and storage of the results 
and can be considered as ‘computational memory devices’. 
Application of different NVM devices for various neuro-
morphic applications require trade-offs in device perfor-
mance and reliability metric. The next section will discuss 
the topic in detail.

The highlights of section 4 are summarized in table 1 and 
figure 12.

5. Design trade-off in NVM devices for different NN 
applications

5.1. Retention and endurance

To capture the correlation between electrical parameters of the 
synaptic device and microscopic factors and to investigate the 
intrinsic trade-off between different parameters, researchers 
have developed different Monte Carlo simulation methods for 
both filamentary and non-filamentary RRAM devices [118, 
119]. The simulation by Gao et al [118, 119] calculates the 
distribution of electric field, current density and temperature 
in the local region of the device, where the resistive switching 
occurs. Then the probability of generation/migration/recovery 
of the ions or vacancies can be calculated. The calculation is 
followed by a stochastic dynamic update of the distribution 
of ions or vacancies. Based on the calculated distribution and 
evolution of ions or vacancies, the device parameters can also 
be calculated that can predict the device characteristics.

Figure 11. (a) Schematic illustration of the neuromorphic network with a 1T1R synapse. The PRE drives the MOS transistor gate voltage 
V, thus activating a current spike due to the low negative TE voltage (VTE  =  30 mV) set by the POST. The current spikes are fed into the 
POST, which eventually delivers a V spike back to the synapse as the internal voltage V exceeds a threshold V. The V spike includes a set 
and reset pulse to induce potentiation/depression according to the STDP protocol. (b) Small positive delay and (c) small negative delay 
schemes of the applied pulses from the PRE and POST neurons to the 1T1R synapse. Reproduced from [116]. CC BY 4.0.
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Table 1. Comparison between different reported RRAM and CBRAM devices with regards to the key device parameters.

Material stack
Switching voltage (V)  
(SET/RESET)

Switching levels 
(Ω) (LRS/HRS) On/off ratio Speed (ns) Retention Endurance Reference

RRAM TiN/TiOx/HfOx/
TiN

+0.8/−0.8 1 k/1 M 103 5 10 years 105 [61]

Pt/Ta2O5−x/
TaO2−x/Pt

−1/+2 30 k/NR NR 10 10 years @ 85 °C 1012 [67]

Ta/Ta2O5:Ag/Ru +0.7/−0.7 100 k/10 M 102 100 115 d @ RT 5  ×  107 [107]
TiN/ N:HfO2/Pt +1/−1 1 k/10 k 10 900 104 s @ 85 °C 109 [140]
TiN/TiO2/a-Si/TiN +7/−7 <1 µA current 

for 30 nm device
NR 10 3 years @ 55 °C 106 [141]

Pt/Ti/TiO2−x/
Al2O3/Pt

−2/+2 10 k/100 k 10 5  ×  105 10 years 5  ×  103 [80]

TiN/HfOx/AlOx/Pt +1.4  →  +1.8/−2.2  →  −2.6 10 k/1 M 102 50 7200 s 105 [69]
CBRAM Pt/GeSO/TiN +0.7/−1.1 200/500 2.5 100 NR 2  ×  103 [137]

TE/Cu–Te/GdOx/
BE

+3/−1.7 10 k/10 M 103 5 103 s 107 [100]

TE/Ag  +  Si/Si/BE 3.2/−2.8 25 M/200 M 8 3  ×  105 NR 107 [92]
Cu/SiO2/Pt +1/−0.5 500 M/5 G 10 NR NR 104 [101]
Cu/Ta2O5/Pt +3.5/−2.5 100/100 M 106 104 NR 104 [89]
Cu/TiW/Al2O3/W +1/−1 100 k/100 M 103 10 600 s @ 125 °C 106 [99]
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Non-filamentary RRAM devices, also known as inter-
face switching RRAM devices, are suitable for bi-directional 
analog switching, but they usually suffer from the retention 
and speed trade-off [118]. The resistive switching of non-fil-
amentary RRAM is attributed to the change of an interfacial 
electronic barrier modulated by oxygen vacancy migration. 
As shown in figures  13 and 14, if the migration barrier of 
oxygen vacancy is higher, the device is more stable, but also 
requires more time for programming. In contrast, with a lower 
migration barrier of oxygen vacancy, the programming speed 
can be increased, but retention degrades very fast. For most 
of the cases, HRS is the stable state and the resistance of the 
lower resistance state increases with time. Since non-filamen-
tary RRAM devices were mostly used as analog synapses for 
online training [73, 80, 120], the research community has 
aimed at increasing programming speed without considering 

retention. Even so, the programming speed was still on the 
order of micro-second, and the reported references on data 
retention for multilevel states at high temperature were lim-
ited. For PCRAM, the trade-off between programming speed 
and retention can be achieved by modulating the stoichiom-
etry of the GST material with tungsten dopant [121] or apply-
ing a constant voltage via prestructural ordering (incubation) 
effects [122].

On the other hand, filamentary RRAM devices (including 
both OxRAM and CBRAM), which have widely been inves-
tigated for the use as a digital nonvolatile memory, can have 
both nano-second programming speed and excellent high 
temper ature retention. This is because the programming pro-
cess of filamentary RRAM originates from oxygen vacancy 
generation or oxygen interstitial migration, while the retention 

Figure 12. Comparison of RRAM, CBRAM and PCM technology.

Figure 13. Simulated retention behavior of non-filamentary 
RRAM devices with various migration barrier of oxygen vacancy. 
Simulation parameters can be found in [118].

Figure 14. Simulated potentiation process of non-filamentary 
RRAM devices with various migration barrier of oxygen vacancy. 
The programming voltage is fixed as 2 V and pulse number is fixed 
as 100. To program to a larger ratio, longer pulse width is required.
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degradation is due to the oxygen vacancy diffusion [57, 123]. 
These different mechanisms have different activation ener-
gies and obviate the intrinsic trade-off of retention and speed. 
However, filamentary RRAM faces another trade-off problem 
between retention and multilevel switching. In CBRAM, the 
source of the filament is metal ion interstitial migration. So, 
the aforementioned conclusions are similar. The only differ-
ence may be that the activation energy of metal ions is smaller 
than that of oxygen vacancies; so the CBRAMs are faster but 
the retention is worse.

Generally, the connection and rupture of the CF causes 
abrupt resistance change, so filamentary RRAM devices are 
best utilized as binary synapse [124] or single-bit NVM. 
Muraoka and Ninomiya et al proposed a method to make the 
oxygen vacancies distributing more tightly, forming a sin-
gle strong CF with high oxygen vacancy concentration [123, 
125]. With this optimization method, oxygen vacancies are 
not easy to diffuse out from the CF region, and even though 
some of these oxygen vacancies diffuse out, only a small 
resistance change will be observed. In this case, retention can 
be improved significantly. Recently, Gao et al proposed that 
analog switching behaviors could be realized on filamentary 
RRAM separating the oxygen vacancies to different location, 
forming multiple weak CFs [119]. Each CF only contributes 
to a small portion of the total conductance of the device. These 
CFs are not so stable as the CFs in single-CF device, and thus 
retention degradation can be observed at high temperature. 
A  similar idea of weak CF was demonstrated in CBRAM 
using Ag doped SiO2 [92].

An order parameter was introduced to quantify the distribu-
tion of oxygen vacancy [119]. The order parameter is defined 
as the percentage of vacancy–vacancy neighbored pairs in the 
whole lattice of switching oxide layer. It can be expressed as 
OV = 2NV−V/zCVN , where NV−V is the number of vacancy–
vacancy neighbored pairs, CV is the concentration of oxygen 
vacancy, N is the total number of oxygen sites in the oxide 
layer, and z is the coordinate number of lattice. As shown in 

figure 15, if the order parameter is large (ordered state), which 
means a strong CF is formed and the device cannot show good 
analog switching, the retention is high. Whereas, if the order 
parameter is small (disordered state), which means the device 
is designed for good analog switching and multiple weak CFs 
may be formed, resistance fluctuation is observed under high 
temperature baking. To improve the retention, doping method 
or multi-layered structure were developed to avoid oxygen 
vacancy diffusion from its original location [126]. However, 
doping will introduce discrete dopant variations when the 
device is scaled down to a smaller size.

Endurance is another key parameter for device reliabil-
ity. Till now, there are few works reporting the endurance 
of analog switching NVM. For binary switching, which 
was mainly aimed for use as digital memory, degradation of 
endurance were extensively investigated [126]. Chen et  al 
found that there is a tradeoff between endurance and reten-
tion [127]. To get better endurance, the oxygen reservoir layer 
is very important. This layer could control the concentration 
of oxygen vacancy in the resistive switching layer, avoiding 
quick loss of oxygen ions. Besides retention and endurance, 
read disturbance is another impportant reliability parameter 
[128]. In a NN, read disturbance dictates how many times of 
inference process the network can do without refreshing the 
weights. Continuous reading may change resistance state of 
the devices and degrade the accuracy of the network. Although 
there has been no clear conclusion, it is widely accepted that 
read disturbance is correlated with the retention degradation, 
and somewhat analogous to a voltage accelerated retention 
degradation process [129, 130].

5.2. Operating voltage

Reducing the operating voltage is important for lowering the 
power consumption of the NN. Specifically, an operating volt-
age of less than 1 V is essential for CMOS-compatible on-chip 
integration of neuromorphic devices. The read volt age may 

Figure 15. (a) Simulated retention behavior of filamentary RRAM devices with single strong CF. 100 devices from the same original state 
are simulated and shown. Baking temperature is 85 °C. Simulation details and other parameters can be found in [9]. Inset: current density 
distribution of the RRAM device. Its order parameter is 0.67. (b) Simulated retention behavior of filamentary RRAM devices with multiple 
weak CF. The other situation is the same to (a). Inset is the current density, and its order parameter is 0.46. Retention becomes worse in this 
case.
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also determine the total scale of the network since larger read 
voltages result in larger read current. In a highly parallel NN, 
the large read current through bit lines may limit the array size. 
If the non-linearity of I–V curve is very large, increasing read 
voltage will significantly increase the read current. However, 
due to current fluctuation, the read volt age cannot decrease 
too much. The current fluctuation mainly comes from the 
random telegraph noise caused by electron trapping/detrap-
ping and oxygen (ions or vacancies) vibration [119, 131, 132]. 
Typically, only one or several traps or oxygen vacancies con-
tribute to the current fluctuation, so the amplitude of current 
fluctuation is almost independent of the current level. With a 
small read voltage, current fluctuation contributes a large por-
tion to the read current and may affect the accuracy of the NN. 
Therefore, to make the read current more stable, read voltage 
should be kept at a reasonable range and cannot be too small.

The programming voltage depends on the SET/RESET 
voltage of the synaptic devices. It should be higher than the 
threshold (SET/RESET voltage) for switching and cannot be 
too large to avoid hard breakdown. The voltage-time-dilemma 
indicates that reducing programming voltage linearly will incur 
an exponential increase in programming time [53, 57]. The 
SET/RESET voltage only depends on the synaptic device itself 
and is usually less than 2 V. But sometimes a barrier layer is 
designed for nonlinear I–V curve or better reliability. The new 
layer may take up part of the applied voltage and thus increase 
the SET/RESET voltage by up to several volts. Meanwhile, it 
should also be noticed that too small SET/RESET voltage may 
cause a read disturbance issue [130]. If the read voltage is close 
to the SET/RESET voltage of the device, the resistance may 
change very fast during the inference process. This discussion 
is valid for both RRAM and CBRAM.

5.3. Resistance levels and variability

To study the feasibility of synaptic devices as analog weights 
on NNs, a simulator (NeuroSim) has been developed [133] 
for a 2-layer MLP NN with synaptic device properties incor-
porated into the weights. As shown in figure  16, MNIST 
handwritten digits are used [134] as the training and testing 
dataset to implement online learning and offline classification. 
The MLP network topology is 400 (input layer)–100 (hidden 
layer)–10 (output layer). 400 neurons of the input layer cor-
respond to 20  ×  20 MNIST image (converted to black/white 
and edge cropped), and 10 neurons of output layer correspond 
to 10 classes of digits. Such a simple 2-layer MLP can achieve 
96%–97% in the software baseline. In online learning, the 
MLP simulator takes into account the synaptic device prop-
erties in training the network with images randomly picked 
from the training dataset (60 k images) and classifying the 
testing dataset (10 k images). In offline classification, the net-
work is pre-trained by software, and the MLP simulator only 
performs the classification with synaptic device properties.

As shown in figure 17, several non-ideal synaptic device 
properties in the simulator is evaluated such as non-linear and 
noisy weight update, limited weight precision and finite weight 
range, etc. To analyze the effect of nonlinear weight update, 
a set of nonlinear curves are defined and labeled with nonlin-
earity values from 6 to  −6 for both the potentiation (weight 
increase) and depression (weight decrease). The potentiation 
and depression will not necessarily follow the same trajec-
tory due to the non-linearity of weight update, resulting in 
the asymmetry with positive non-linearity value for poten-
tiation and negative nonlinearity for depression. Experiments 
performed by various groups show that the potentiation 

Figure 16. (a) The 2-layer MLP NN. The input MNIST images are cropped and encoded into black/white data for simplification. (b) In the 
MLP simulator, the weights WIH and WHO are implemented with synaptic arrays, where each synaptic device exhibits non-ideal device 
properties.
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and the depression have positive and negative nonlinearity, 
respectively [69, 92, 120, 135]. During the weight update, 
the device’s conductance is tuned within a confined conduct-
ance range, and only a finite number of conductance states 
are available due to the weight precision. Ideally, the lowest 
conductance state (OFF state) should be low enough to rep-
resent the zero weight in the algorithm, making the dynamic 
range (conductance ON/OFF ratio) sufficiently large. In real-
ity, the ON/OFF ratio is always finite and normally not large 
enough. Different devices may even observe different ON/
OFF ratios if the conductance range has a variation. On top 
of the nonlinear weight update curves, there are also consider-
able weight update variations from device to device, and even 
from pulse to pulse within one device. The effect of device-to-
device weight update variation can be analyzed by introducing 
the variation into the nonlinearity baseline for each synaptic 
device, while the cycle-to-cycle variation refers to as the vari-
ation in conductance change at every programming pulse.

To quantify the impact of the aforementioned non-ideal 
device properties, sensitivity analyses was performed for 
online learning and offline classification using the simulator. 
Figure 18(a) shows the requirement of weight precision. The 
result suggests that 6-bit weight is required for online learn-
ing, while 2-bit weight is needed for offline classification (at 
least for MNIST dataset) and 1-bit weight introduces only a 
slight degradation. Figure 18(b) shows the learning accuracy 
with different ON/OFF ratios. Limited ON/OFF ratio (<50) 
will degrade the accuracy of offline classification. The net-
work may adapt itself to this limited ON/OFF ratio during 
learning thus the online learning can tolerate more ON/OFF 
ratio (>10 is needed). However, the accuracy drop in online 
learning is sharper, which is probably because the network 
will deviate more from its correct form with both erroneous 
weighted sum and weight update results. Figure 18(c) shows 
the impact of weight update non-linearity and asymmetry. 

The result shows that the asymmetry (positive potentiation P 
and negative depression D) is the key factor that degrades the 
accuracy, and high non-linearity can be tolerated if P/D have 
the same polarity. However, for common situations where P/D 
is positive/negative, the impact of nonlinearity on the online 
learning accuracy is very critical. High accuracy can only be 
achieved with small nonlinearity (<1). For offline classifi-
cation, there is no asymmetry/nonlinearity issue as the cell 
conductance can be iteratively programmed to the desired 
value [136]. Variation sensitivity analyses are performed with 
different asymmetry and non-linearity values (P/D: positive/
negative) in online learning. Figure 18(d) shows the impact 
of conductance range variation on the learning accuracy. We 
added the variation (with standard deviation (σ) in terms of 
percentage) on the highest conductance state (ON state) as it 
changes the conductance range most. The result shows that 
the conductance variation does not degrade the learning acc-
uracy. Instead, it remedies the accuracy loss due to high non-
linearity. However, an opposite trend can be observed for the 
device-to-device variation, as shown in figure 18(e).

The amount of device-to-device variation is defined as the 
standard deviation (σ) of nonlinearity. At low non-linearity 
(<1), the accuracy slightly decreases with larger variation. 
For the non-linearity  >1, the impact becomes much more 
prominent. On the other hand, the amount of cycle-to-cycle 
variation (σ) is expressed in terms of the percentage of the 
entire weight range. As shown in figure  18(f), small cycle-
to-cycle variation (<2%) can alleviate the degradation of 
learning accuracy by high non-linearity. The reason may 
be attributed to the random disturbance that aids the conv-
ergence of the weights to an optimal weight pattern (i.e. to 
help the system jump out of local minima). Thus, synaptic 
devices with non-linear weight update behavior may per-
form better than expected if they exhibit a little noisy weight 
update. However, too large variation (>2%) overwhelms the 

Figure 17. Schematic illustration of non-ideal synaptic device properties modeled in the MLP simulator, including (1) nonlinear weight 
update (a), (2) weight precision, (3) device-to-device weight update variation, (4) cycle-to-cycle weight update variation, (5) dynamic range 
(conductance ON/OFF ratio) and (6) conductance variation (b).
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deterministic weight update amount defined by the algorithm 
and thus is harmful to the learning accuracy. This set of simu-
lations help to define the desired synaptic device characteris-
tics that enables high online learning accuracy. To summarize, 
a symmetric and close to linear weight update with sufficient 
ON/OFF ratio is critical, while a reasonable amount of device-
to-device, cycle-to-cycle variations could be tolerated. As the 
simulation presented in this section is generalized and based 
on by varying the device properties, the analysis is technology 
agnostic and the conclusions are valid for any type of resistive 
memory devices.

6. Perspective on the device parameters for large 
scale NN architectures

For a broad class of neuromorphic applications, large con-
ductance switching range with linear response for identical 
switching pulse are desired. There exists an exponential rela-
tionship between switching pulse witdh and pulse amplitude. 
Low energy switching requirement stipulates that the switch-
ing pulse width and pulse amplitude be as small as possible. 
There has been considerable work done so far in finding 
the right material combination for the desirable switching 
characteristics. Based on our review of such devices in sec-
tions 4 and 5, we have summarized the current state-of-the-art 
device parameters reported for neuromorphic application in 
figure  19. Figure  19(a) shows the switching pulse width as 

a function of switching pulse amplitude for different RRAM 
and CBRAM device stacks used for neuromorphic applica-
tion. Also, figure 19(b) shows the reported conductance range 
as a function of the pulse amplitude for the corresponding 
devices. Devices ideally suited to the neuromorphic appli-
cation should provide large conductance switching range at 
low pulse amplitude and small pulse width. In figure 19(a), 
the direction of smaller switching energy is marked with an 
arrow. The ideal device stack will lie at the corner pointed by 
the direction of the arrow shown in this figure. Based on this 
metric, Pt/GeSO/TiN [137], TiN/TaOx/Pt [138] and TiN/SiOx/
TaOx/Pt [138] would have been the better choices. But fig-
ure 18(b) suggests that these devices show high conductance 
which is not desirable since a large array of such devices would 
draw large currents. Also, the range of conductance change is 
very low. Considering both the figures of merit, the optimum 
choice would be TiN/HfOx/AlOx/Pt [139] (data point 9 in fig-
ure  18) which shows two orders of conductance switching 
at short switching pulse width. Another promising device is 
HfOx device with thermally enhanced layer (TEL) [70] (data 
point 14 in figure 18) which ensures fast switching at low volt-
age. The conductance also is not too high. The range of con-
ductance switching needs to be increased in order to ensure 
higher precision matrix-vector multiplication for NN appli-
cation. Cycle-to-cycle variation limits the number of resis-
tive switching states that also decreases the precision of the 
matrix-vector multiplication. Simulation suggests that smaller 

Figure 18. The impact of (a) weight precision, (b) conductance ON/OFF ratio, (c) weight update asymmetry/nonlinearity, (d) conductance 
range variation, (e) device-to-device variation and (f) cycle-to-cycle variation in online learning and/or offline classification. Reproduced 
with permission from [133].
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networks can tolerate some device-to-device variation, but in 
order to scale up the network lower device-to-device variation 
is desired. One useful capability of NVM array for in-memory 
computing is ‘blind weight update’ which saves additional 
read during the write sequences by not requiring write-verify 
scheme. To have such capability in an array, besides low cycle-
to-cycle variation, highly linear resist ance switching response 
as a function of identical pulses is required. While this is a 
limitation for inorganic devices, certain organic devices show 
high linearity [19]. Inorganic devices with TEL show a lot of 
promise in this regard [70].

7. Conclusion

The inference and training of today’s state-of-the-art DNNs 
demand extreme energy efficiency beyond general-purpose 
architecture. General purpose computing architecture cannot 
provide the optimized dataflow needed to achieve the desired 
computing throughput at low energy cost for DNNs. Design 
of specialized hardware accelerator improves the energy effi-
ciency of DNN inference and training by optimizing memory 
hierarchy and data-flow design, improving parallelism, and 
leveraging special properties of NNs such as error-tolerance 
and sparsity. The use of emerging on-chip NVM provides a 
path for further improving energy efficiency by performing 
highly-parallel analog multiply-accumulate and weight update 
directly inside memory and eliminating data movement. The 
capability to integrate tera-byte scale memory on chip enables 
hardware design to keep up with the increasing model size and 
computation complexity of DNN models. On-chip integration 
of memory provides with highly parallel and high bandwidth, 
memory access. The inference and training of DNN pose dif-
ferent sets of requirements on NVM device charactersitices. 

In general, larger conductance range, more intermediate 
states, and higher resistance are desirable for both inference 
and traning. For inference, an ideal device should also have 
linear I–V relationship and long retention time. For training, 
symmetric and linear pulse response, small device-to-device 
and cycle-to-cyle variation, and good endurance are crucial. 
In this paper, we reviewed the state-of-the-art emerging NVM 
devices. None of the devices we have reviewed could simul-
taneously combine all these favorable properties. Besides fur-
ther device engineering, it is crucial for hardware designers to 
select proper material stacks and make reasonable tradeoffs 
depending on the target application.

The switching mechanism in RRAM involves oxygen ion 
movement to and from oxygen vacancies. Therefore, control-
ling the oxygen ion movement during pulsed switching in 
RRAM can be a promising way to achieve the aforementioned 
performance goals. Placing an oxygen ion barrier to make a 
bilayer RRAM and confinement of the generated heat dur-
ing switching have shown significant improvement in analog 
switching. Better thermal management in RRAM can also 
provide filament stability that could improve reliability like 
retention and endurance. If the ideal device characteristics 
can be achieved, the most important aspect of Kirchoff’s law 
based analog matrix-vector multiplication array using NVMs 
is that it can provide ultra-low energy, high throughput com-
puting without compromising bit precision that is currently 
missing in the neural network accelerator landscape.
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