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Non-volatility is emerging as an essential on-chip memory characteristic across a
wide range of application domains, from edge nodes for the Internet of Things (loT)
to large computing clusters. On-chip non-volatile memory (NVM) is critical for low-
energy operation, real-time responses, privacy and security, operation in
unpredictable environments, and fault-tolerance [1]. Existing on-chip NVMs (e.g.,
Flash, FRAM, EEPROM) suffer from high read/write energy/latency, density, and
integration challenges [1]. For example, an ideal 10T edge system would employ
fine-grained temporal power gating (i.e., shutdown) between active modes.
However, existing on-chip Flash can have long latencies (> 23ms latency for erase
followed by write), while inter-sample arrival times can be short (e.g., 2ms in [2]).

Our chip monolithically integrates two heterogeneous technologies: 18KB of on-
chip resistive RAM (emerging on-chip NVM, technology details in Fig. 14.3.1) on
top of commercial 130nm silicon CMOS (16b general-purpose microcontroller core
with 8KB of SRAM). For various applications (in machine learning, control, and
cryptography), we demonstrate active mode average energy of 43pJ/cycle (up to
5.7x lower vs. similar chips at similar speeds / technology nodes using on-chip
Flash and FRAM), fine-grained temporal power gating (0.25uW during shutdown)
with up to 8us (average 4.7us) transition from active to shutdown mode (up to
5,878x quicker vs. on-chip Flash), and 2-clock cycle (200ns) transition from
shutdown to active mode. We also demonstrate a complete chip that stores multiple
bits per on-chip RRAM cell (5 resistance values, i.e., 2.3b per cell) and processes
stored information correctly (vs. previous demonstrations using standalone RRAM
cells or few cells in standalone RRAM array). Such multi-bit storage improves the
accuracy of neural network inference (2.3x for MNIST) on same hardware (vs. 1b
per cell).

RRAM (like other emerging NVMs, such as phase change memory) exhibits write
failures [1]. We overcome these challenges through the critical combination of two
resilience techniques: 1) dynamic address remapping, which overcomes write
failures during system operation with 0.5% active-mode energy increase and
negligible execution time impact; 2) periodic ENDUrance REsiliency using random
Remapping (ENDURER - Fig. 14.3.5) [3] — a new technique implemented here. This
combination enables our chip to achieve a 10-year functional lifetime when running
MNIST inference continuously.

To demonstrate fine-grained temporal power gating enabled by on-chip RRAM, our
chip operates as follows (Fig. 14.3.1). During active mode, instructions are read
from the on-chip 12KB instruction RRAM and executed by the microcontroller core
(MSP430 instruction set). During this time, data is accessed from peripheral ports
(e.g., off-chip sensors), on-chip 4KB data RRAM, or on-chip 8KB scratchpad SRAM
(loop counters, temporary variables with repeated writes: memory-mapped using
the compiler). After the data is processed, to transition to shutdown mode, results
are written back to the 4KB on-chip data RRAM (consuming 168pJ over 5 clock
cycles per 16b word, Fig. 14.3.2) and the hardware scheduler unit power-gates (i.e.
turns off power) the core, memory controllers, and memory. Our chip performs this
transition 5,878x quicker than those with on-chip Flash due to the low write latency
of RRAM (500ns vs 23ms for Flash). The chip returns to active mode upon data
arrival (e.g., from sensors).

We run 5 applications representing machine learning (logistic regression, support
vector machine, convolutional neural network), control (Kalman filter) and
cryptography (SHA256 hash) to demonstrate the effectiveness of our chip (Fig.
14.3.2). To put our results into perspective, we select a similar clock rate for our
chip (10MHz, vs. industry chips with existing on-chip NVM such as FRAM and Flash)
that is sufficient for fine-grained temporal power-gating, while avoiding excessive
energy consumption. The active mode power of our chip varies between 407uW to
477uW (average active mode energy: 43pJ/cycle). We achieve average 4.7us/1.6nJ
transition from active to shutdown mode and a 200ns/152pJ transition from
shutdown to active mode (Fig. 14.3.2). Although the industry chips might be
engineered to include additional margins, the overall benefits demonstrated by our
chip are expected to stay significant even after margins are taken into consideration.

We store multiple resistance levels (up to 5 in our chip) inside on-chip RRAM cells
(e.g., neural network model weights, only read during inference) by special
algorithms that change wordline voltage (Vy,) and bitline voltage (V5 ) in addition
to modifying the pulse width (Fig. 14.3.3) and allocating larger resistance windows
for levels with higher resistance values. With greater effective memory capacity
(2.3b vs. 1b per RRAM cell) on the same hardware, higher-precision weights (e.g.,
4b vs 8Db) or larger neural network models (e.g., 6,490 vs. 9,402 weights) can be
used (Fig. 14.3.3). Despite errors (cells with resistance values outside its intended
resistance window) in 5 levels-per-cell storage, we achieve a 2.3x improvement in
inference accuracy (i.e., 2.3x decrease in inference error) for neural networks (on
the MNIST dataset, Fig. 14.3.3) when the weights are encoded as follows: two 5-
level cells for magnitude and one 2-level cell for sign bit.

RRAM is subject to temporary write failures (TWFs) and permanent write failures
(PWFs, resulting in limited endurance: maximum number of successful writes to a
cell) [4] that degrade application accuracy over time (Fig. 14.3.4). Cell-level
parameter adjustment to improve write failures is not sufficient [4]. To address
TWFs, we employ a write-verify scheme with retries [4]. If a write to an RRAM
address is unsuccessful after 4 retries, we map that address (during runtime) to
another location in a separate backup RRAM array using dynamic address
remapping (Figs. 14.3.1, 14.3.4). Our chip contains a backup RRAM array (256 16b
words) for every 4KB of RRAM; 128 words of that backup array are used for this
mapping. The mapping information is stored in a 128-entry volatile look-up table
(volatile LUT, implemented using flip-flops, Fig. 14.3.1). During transition from
active to shutdown mode, the contents of each volatile LUT are stored in the
remaining 128 words of the corresponding backup array (non-volatile LUT). A write
failure to a non-volatile LUT entry results in that entry marked invalid (majority vote
over 5 RRAM bits decides entry validity). When the chip boots, the contents of the
volatile LUTs are loaded from the corresponding non-volatile LUT. We use dynamic
address remapping for our data RRAM, incurring 0.5% energy and negligible
(0.005%) execution time costs; our data RRAM tolerates TWFs and PWFs in 17.3%
and 2% of words, respectively (Fig. 14.3.4). We use stronger programming
conditions (higher voltage, more retries) to mitigate TWFs and insert dummy
instructions to avoid PWFs in instruction memory (as writes occur only during
programming).

Despite limited write endurance of the 4KB data RRAM, we achieve 10-year lifetime
using ENDURER (Fig. 14.3.5, software on FPGA + our chip) combined with dynamic
address remapping, when running our neural network application (MNIST dataset)
continuously (Fig. 14.3.6). We accelerate our tests to account for 10 years of
running an application by first obtaining a sequence of all writes to RRAM (which
account for 258 out of 617,669 total memory operations for a single inference) for
the application. Then, we repeatedly perform the sequence of writes, through the
ENDURER module on the FPGA, on the RRAM (skipping any read operations, writes
to non-RRAM, and computation to save time). In our implementation of ENDURER,
remapping is performed every 30 minutes and we use an SRAM buffer of 8 16b
words.

On-chip RRAM NVM enables significantly lower energy during active mode (vs.
existing on-chip NVM such as Flash and FRAM), fine-grained temporal power gating,
and multiple bits per RRAM cell. Correct computation using multi-bit RRAM cells
in a complete chip successfully improves neural network inference accuracy.
Effective resilience techniques enable chips with on-chip RRAM to achieve 10-year
lifetime (for neural network inference applications) despite write failures in the
underlying RRAM. Our results can be further enhanced through domain-specific
accelerators, bit-cost scalable 3D Vertical RRAM [5], and monolithic 3D integration
of multiple RRAM layers [5]. The presented techniques (fine-grained temporal
power gating, resilience) may be used for other emerging on-chip NVM (e.g., phase
change) technologies as well.
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Figure 14.3.6: ENDURER and dynamic address remapping improves chip

Figure 14.3.5: ENDURER test setup and remapping, read, and write algorithms.  lifetime to 10 years.
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Figure 14.3.7: Die micrograph.
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