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Abstract 
For the first time, a four-layer HfOx-based 3D vertical RRAM, the 
“tallest” one ever reported, is developed and integrated with FinFET 
selector. Uniform memory performance across four layers is obtained 
(±0.8V switching, 106 endurance, 104s@125°C). SPICE simulations 
show that high drive current of pillar select transistors is required for 
high-rise 3D RRAM arrays. The four-layer 3D RRAM is a versatile 
computing unit for (a) brain-inspired computing and (b) in-memory 
computing. (a) Stochastic RRAM synapses enable robust pattern 
learning for a 3D neuromorphic visual system. The 3D architecture 
with dense and balanced neuron-synapse connections provides 55% 
EDP savings and 74% VDD reduction (enhanced robustness) compared 
with conventional 2D architecture; (b) in-memory logic such as 
NAND, NOR, and bit shift, are essential elements for hyper-
dimensional computing. Utilizing the unique vertical connection of 3D 
RRAM cells, these operations are performed with little data movement.  

Introduction 
Brain-inspired cognitive information processing aims at approaching 
the efficiency of brain computation where memory and computing are 
tightly integrated [1]-[3]. In this work, a “tallest”-in-record [4]-[9] 
four-layer 3D vertical RRAM integrated with FinFET is developed and 
characterized. The 3D RRAM is a versatile computing unit that not 
only improves the energy-delay product (EDP) of neuromorphic 
computing due to dense configuration, but also enables in-memory 
computing owing to the unique common-pillar (CP) structure.  

Device Fabrication and Characterization 
Based on an advanced FinFET process platform [10], four-layer 
vertical RRAM is fabricated after M1 process, consisting of 4-layer 
20-nm PVD TiN (BE)/20-nm CVD SiO2, 5-nm ALD HfOx, and PVD 
10-nm Ti/40-nm TiN (pillar TE) (Fig. 1 and Fig. 2). P-channel FinFET 
serves as the pillar selector for the 3D RRAM (Fig. 3). Fig. 4 shows 
the DC switching characteristics of the four-layer 3D RRAM, where 
the integrated FinFET eliminates the current overshoot during RRAM 
operations [11]. Statistical distributions of switching parameters show 
that suitable switching voltage (~±0.8V) and adequate ON/OFF ratio 
(>10×) are obtained for all four vertical cells (Fig. 5). Endurance tests 
show stable pulse switching after 106 cycles across all four layers (Fig. 
6). The measurements are conducted in sequence from L1 up to L4, 
and no disturbance on adjacent layers occurs during operations. Four-
layer cells are also stable after 104s retention tests under 125°C (Fig. 7). 
The device characteristics are then incorporated into full-size 3D array 
simulations including interconnect RC components using HSPICE [6]. 
A higher drive current of the select transistor is required to address 
larger number of vertical layers (Fig. 8). With 400-µA drive current (1-
fin FinFET) and 10-kΩ RLRS measured on the fabricated devices, a 32-
layer 3D RRAM array can be addressed. Increasing RLRS reduces both 
the SET current of selected cell and the sneak current from unselected 
cells, which lowers the ION requirement of the select transistor.  

3D Neuromorphic Architecture 
Stochastic learning that embraces the intrinsic variability of RRAM 
synapses is robust for pattern recognition with the ability of escaping 
local minima and emulating analog weights [12], [13]. Probabilistic 
switching of 3D RRAM as stochastic synapses is measured with 
different suites of pulse amplitude and width to gain a deeper 
understanding of stochastic learning (Fig. 9). Key observations are: (a) 
amplitudes lower than actual SET voltage of RRAM can be chosen to 
achieve a proper switching probability for pattern learning; (b) a 
shorter pulse requires higher amplitude to reach the same probability 
due to nonlinear voltage-time relation of RRAM filament evolution 
(Fig. 9). Such measured behaviors are modeled by the cycle-to-cycle 
variability of equivalent energy barriers of oxygen vacancy movement, 
and are incorporated into the variation-aware RRAM compact model 
we use [14]. The experimentally validated model is then used for the 
system-level simulations. As an illustration, we study an unsupervised 
winner-take-all (WTA) visual system consisting of stochastic synapses 
and leaky integrate-and-fire (LIF) neurons. Conventional networks 
based on 2D crossbar arrays are unbalanced in structure due to large 
number of input neurons for receiving the stimuli but small number of 
output neurons for output classes [12]-[16]. Here, the 3D architecture 

‘folds’ neurons/synapses into balanced (x-y) plane with dense (z 
direction) connections, and thus reduces interconnect RC effects and 
avoids long sneak leakage paths of the 2D architecture [17] (Fig. 10). 
1000 training images of Gaussian random orientations centered around 
four dominant angles are fed into the WTA network. After training, 
four distinct resistance maps are organized. Total energy consumption 
including contributions from the summing current and energy for 
programming synapses is obtained (Fig. 11). Shorter pulses require 
higher amplitudes to reach a certain SET probability. Hence, minimal 
energy consumption is achieved for a moderate pulse width. Compared 
with the conventional 2D architecture, the 3D architecture improves 
EDP by 55% and reduces VDD by 74%, on top of 4× area gain (Fig. 12). 
The lower array VDD protects un-addressed synapses along the pulse 
path from being disturbed, which enhances system robustness [17]. 

In-Memory Computing 
Hyper-dimensional computing is error-resilient as information is 
represented as hyper-dimensional sparse vectors instead of numbers. It 
has been shown to be effective for cognitive tasks such as language 
identification [18]. Here, Boolean logic operations are required as 
basic kernels. The energy efficiency of hyper-dimensional computing 
can be boosted if in-memory logic is employed to eliminate energy-
hungry data movement (aka “von Neumann bottleneck”) [19]. Owing 
to the unique CP structure, essential logic operations are readily 
realized on the multi-layer 3D RRAM, where the state variable for 
Boolean logic is the RRAM resistance (RLRS=1, RHRS=0). Two 
computing modes are available: programming mode (Fig. 13-15) and 
readout mode (Fig. 16). Any arbitrary multi-stage Boolean expressions 
can be implemented by programming 3D RRAM cells along a 
common pillar. Deeper logic stages and multiple-inputs are 
accommodated by more layer stacks. Specific programming pulse 
trains are used for basic Boolean operations, such as NAND (Fig. 13) 
and NOR (Fig. 14). Bit shift from L1 to L4 for hyper-vector 
permutation can be extremely simple (Fig. 15). For the readout mode, 
input data are addresses that are presented to a decoder (Fig. 16 inset). 
The decoder output selects a target pillar (selected by FinFET) that 
contains the output of the logic function. The previously memorized 
output data are read out directly without the need to re-program any 
cell. The endurance of such in-memory computing is of paramount 
importance. Readout mode is employed for frequently-used logic. 
1011-cycle readout operations for NAND/NOR logic evaluations are 
measured experimentally, limited merely by test time (Fig. 16). The in-
memory computing on 3D RRAM is dynamically reconfigurable, from 
readout mode to programming mode, to allow for new multi-stage 
logic functions. 106 RRAM endurance is estimated to support ~105 re-
programming for implementing various multi-stage logic functions.   

Conclusion 
Key achievements: (1) the “tallest” four-layer 3D vertical RRAM 
integrated with FinFET is developed with uniform performance across 
four layers; (2) memory-transistor co-design guidelines are provided 
for high-rise 3D RRAM arrays; (3) 3D architecture with dense neuron-
synapse connections improves energy efficiency of neural networks; (4) 
in-memory computing (NAND, NOR, bit shift) is demonstrated with 
1011 address-and-read cycles on 3D RRAM. In summary, the balanced 
array configuration and unique CP structure make 3D RRAM an 
energy-efficient versatile computing unit, which is not readily 
achievable by conventional 2D RRAM.  
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Fig. 2 TEM image of four-layer 3D 
vertical RRAM. TiN (40 nm)/Ti (10 
nm) serves as top electrode, and 
four TiN layers serve as bottom 
electrodes. HfOx across TiN layers 
is the resistive switching layer. 

Fig. 3 ID-VSG characteristics of P-
channel FinFET (inset: TEM) with 
300-nm gate length and 100-nm 
width. Good driving capability 
benefits 3D RRAM operations. 

Fig. 4 DC I-V characteristics of 
four-layer (L1-L4) RRAM cells 
around the same vertical pillar, with 
100-µA compliance current 
provided by pillar select FinFET. 

Fig. 1 
Schematic 
of 4-layer 

3D RRAM-
FinFET & 
fabrication 

flow. 

 

Fig. 5 Measured cycle-to-cycle 
statistics of resistance and 
switching voltages of four-layer 
RRAM cells.   

Fig. 6 Measured endurance 
characteristics. None of four cells 
show degradation after 106 cycles. 
Besides, consecutive switching is 
disturb-free on adjacent layers. 

Fig. 7 Measured retention 
characteristics. Four-layer RRAM 
cells are stable after 104 seconds at 
125°C. Read operations are disturb-
free on adjacent layers. 

Fig. 8 SPICE-simulated required 
drive current of bottom transistors 
for 3D vertical RRAM arrays. 
Increasing RLRS of RRAM cells 
mitigates driving capability 
requirement. Inset shows the 
measured FinFET ID-VSD curves. 

Fig. 9 Measured (symbols) and 
modeled (lines) probabilistic 
switching behaviors of RRAM 
synapses as a function of pulse 
amplitude and pulse width. Each 
single probability is determined 
based on 100 SET/RESET pulse 
cycles (RESET: -1.5 V pulses). 

Fig. 10 A 3D neuromorphic visual 
system based on a 32×32×4 3D 
array. A winner-take-all (WTA) 
network with stochastic learning 
rule is simulated for orientation 
detection. Four-layer synapses are 
self-organized into distinct R-maps. 

Fig. 11 Simulated total energy 
consumption for training the WTA 
network as a function of pulse 
width and synapse SET probability 
(PSET). Shorter pulses require higher 
amplitude for the certain PSET, 
which leads to optimal energy point 
found at 30 ns pulse width.    

Fig. 12 SPICE-simulated EDP and 
required VDD to program worst-
case-located synapses (15% PSET) 
in 2D and 3D WTA network. 3D 
architecture leads to 55% EDP 
savings and 74% VDD reduction 
(better reliability) on 256-kb input 
images compared with 2D design. 

Fig.13 Experimental demonstration 
of in-memory NAND logic on the 
CP structure (inset). Waveforms 
show the applied pulse train (black) 
to perform computation and the 
initial/final readout states (red) of 
input/output RRAM cells. 
NAND/AND are vertically realized 
in ~8F2 area. 

Fig.14 Experimental demonstration 
of in-memory NOR logic on the CP 
structure (inset). Waveforms show 
the applied pulse train (black) to 
perform computation and the 
initial/final readout states (red) of 
input/output RRAM cells. 
NOR/OR are vertically realized in 
~8F2

 area. 

Fig. 15 Measured inter-layer bit 
shift illustrated by resistance 
evolution (upper shows timing 
diagram). LRS (‘1’) is in black 
and HRS (‘0’) is in rainbow 
color scale. Bit ‘1’ is being 
shifted vertically from L1 to L4. 

Fig. 16 Measured in-memory 
computing endurance with no error bit 
after 1011 readout cycles of memorized 
functions. Inset shows circuit 
implementation of logic evaluations via 
address-and-read, without the need to 
re-program RRAM cells (switching 
endurance requirement is alleviated). 
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