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A B S T R A C T

Projection multi-photon 3D printing is an emerging technique for fabricating micro-nano structures at excep
tionally high speeds. It leverages the use of a digital micromirror (DMD) to project and print entire 2D layers at 
once, offering higher throughput and scalability than conventional point-by-point laser scanning. While two 
photon polymerization is widely regarded as an outstanding method for achieving high dimensional accuracy at 
the nanoscale, the projection aspect introduces a new set of challenges, such as under-printing due to oxygen 
inhibition. The inherently complex photopolymerization dynamics make it difficult to model and simulate 
efficiently. To address this, we introduce a data-driven methodology employing deep learning to build a sur
rogate model of the printing process and an inverse model for 2D DMD pattern optimization to achieve desirable 
printed shapes. By printing diverse shapes morphed by various parametrization schemes, we built a dataset for 
training convolutional encoder-decoder (autoencoder) neural networks. The trained surrogate accurately maps 
input DMD patterns to their final printed geometries, capturing nonlinearities introduced by process physics. 
Inverting the inputs and outputs further enabled us to train an inverse model for generating pre-compensated 
DMD patterns to print desirable target geometries. Experimental findings demonstrate that this deep learning 
approach accurately predicts printed outputs and enhances dimensional accuracy in the printing of 2D layers. 
Our results reveal a viable approach to overcome inhibition-induced constraints, enabling more accurate 
projection-based multi-photon printing at the micro and nanoscale.

1. Introduction

Additive manufacturing (AM) has transformed the way complex 
three-dimensional (3D) structures are fabricated, offering the ability to 
prototype intricate geometries with exceptional precision, all while 
reducing material waste and overall production costs [1]. While prev
alent macroscale additive manufacturing (AM) techniques such as fused 
deposition modeling (FDM), powder bed fusion (SLM/SLS), and direct 
energy deposition (DED) face limitations in feature size and surface 
quality, alternative methods like stereolithography (SLA) and digital 
light processing (DLP) provide improved resolution and finer achievable 
feature sizes. Specifically, digital light processing (DLP) based SLA sys
tems improve feature fidelity by projecting patterned light onto photo
sensitive materials, triggering localized photopolymerization reactions 
[1,2]. These light-driven techniques leverage the fundamental interac
tion between photons and matter to initiate precise, layer-by-layer 
curing of photopolymers [3].

Multi-photon lithography (MPL) is established as a leading strategy 
for micro- and nanoscale additive manufacturing, achieving nanometer 
feature sizes [4]. MPL, including two-photon polymerization (TPP), le
verages the simultaneous absorption of two (or more) photons of iden
tical frequency from a high-intensity, ultrafast laser pulse, focused onto 
a small volume of photosensitive resin. This nonlinear phenomenon, 
enabled by the high photon densities within sub-femtoliter regions of a 
focused ultrafast laser [5], can produce feature sizes below the diffrac
tion limit [6]. Such capabilities have propelled TPP into widespread use 
across multiple disciplines, including biomedical engineering [7], 
micro-robotics [8], micro-optics [9], and metamaterials [10]. However, 
the point-by-point scanning of nanometer scale voxels inherently con
strains throughput and hinders scalability. Various efforts have sought 
to boost the fabrication speed and output capacity of TPP, for example, 
by employing holographic techniques that divide a single laser beam 
into multiple parallel beams. These methods, however, are generally 
limited to repetitive structures [11,12]. Projection 
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micro-stereolithography (PµSL) addresses this limitation by utilizing 
digital light processing with a spatial light modulator (SLM) [13] or a 
digital micromirror device (DMD) [14], which shapes and projects an 
intense laser pulse to trigger photopolymerization across an entire 2D 
layer with a microscale feature size.

The recently developed spatiotemporal focusing of femtosecond 
laser pulses ensures that only a sub-micrometer-thick target print plane 
receives sufficient laser intensity to initiate two-photon polymerization, 
allowing printing at micro- and sub-micrometer scales [15,16]. 
Conversely, printing full 2D slices incurs challenges such as dimensional 
inaccuracies due to oxygen inhibition, necessitating additional pre
processing steps [17]. Prior simulation works on spatiotemporal 
focusing based projection printing focused on numerically modeling the 
spatiotemporal focusing of the femtosecond pulses [16]. Finite element 
modeling (FEM) was also employed to explore projection-based TPP on 
relatively simple nanowires [18]. Nevertheless, numerous theoretical 
and empirical models formulated for MPL [19–21] suggest the signifi
cant difficulty of simulating 3D photon-initiated polymerization for 
arbitrary geometries, given the numerous process parameters involved. 
On the other hand, data-driven techniques, encompassing machine 
learning (ML) and deep learning (DL), have gained traction for opti
mizing 3D printing processes. While a few studies have applied DL to 
MPL, these efforts are often centered on limited cases, such as classifying 
printability. For instance, Pingali et al. [22] trained a classification 
neural network (NN) on finite element simulations of simple nanowire 
geometries to assess their printability. They, however, concluded that 
the surrogate model could not reliably capture fine feature sizes. In 
another approach, Lee et al. [23] utilized convolutional neural network 
(CNN) models to identify optimal light dosage and assess part quality on 
experimental data obtained using a commercial point-by-point laser 
scanning TPP printer. Additional ML studies have applied Gaussian 
process (GP) models to address inter- and intra-defects in printed 
structures. Yang et al. [24] used GP regression to quantify and devise 
compensation schemes aimed at enhancing geometric compliance. 
Recently, the Bayesian optimization framework [17] was employed to 
enhance the geometric fidelity of projection multiphoton nanoscale 
lithography and demonstrated efficiency by requiring fewer data points 
per shape. However, its generalizability to other geometries requires 
further investigation.

Projection-based multiphoton 3D printing holds great potential for 
fabricating 3D nanostructures with exceptional precision and speed. 
However, attaining high-fidelity prints continues to be time-consuming 
due to the complex, layer-by-layer optimization required for each indi
vidual 2D projection pattern slices. In this study, we present a compre
hensive deep-learning framework designed to enhance the precision and 
efficiency of projection-based multiphoton printing. Specifically, we 
introduce a more elaborate parameterization strategy that is built upon 
the parameterization scheme introduced in [17], alongside an expanded 
shape catalog for generating 2D DMD input patterns. We also implement 
a custom optical data acquisition procedure to capture all relevant 
process parameters. By embedding patterns and print features directly 
within the images, we aim to establish a more robust image-to-image 
deep convolutional neural network framework. This approach lever
ages an encoder to deconstruct the input pattern into a compact vector 
representation before subsequently being reconstructed by a decoder 
into a processed representation of the input data [25]. Such architecture 
is formally referred to as an autoencoder (AE). Traditionally, variations 
of this network have been primarily employed in biomedical image 
segmentation [26,27], anomaly detection [28] and object recognition 
[29]. Here, we adapt the autoencoder paradigm to a supervised learning 
context, using 2D DMD patterns as inputs and corresponding printed 
masks as outputs. We developed custom autoencoders built upon pop
ular image classifier designs that were originally intended to address the 
issues associated with deep neural networks (DNNs), such as vanishing 
gradients [30]. UNet-inspired skip connections [26] are also incorpo
rated to improve the image reconstruction resolution and optimize the 

surrogate model. We further demonstrate that by inverting the inputs 
and outputs to the model, we can train an inverse model to generate 
pre-compensated DMD patterns to print desirable target geometries with 
high-dimensional fidelity. This work establishes a novel deep 
learning-based framework that directly addresses key bottlenecks in 
projection multiphoton printing, paving the way for more reliable and 
scalable additive manufacturing at the nanoscale.

2. Methods

2.1. Experimental setup for projection multi-photon printing

A schematic of the projection multiphoton 3D printing configuration 
utilized in this study is depicted in Fig. 1(a). A Ti:sapphire regenerative 
amplifier (Coherent Legend Elite Duo USX) produces an 800 nm central 
wavelength laser beam with a 30 nm bandwidth and a 50 fs pulse 
duration at a repetition rate of 5 kHz. The beam is routed via a πShaper 
(AdlOptica πShaper 12_12_TiS_HP), which transforms the Gaussian 
spatial profile into a flattop distribution, enabling uniform illumination 
of the 0.45-inch diagonal micromirror array of the DMD (DLP4500NIR). 
The incidence angle on the DMD surface is established at 24◦ from the 
normal. The dynamically patternable device consists of more than a 
million micromirrors configured in a diamond arrangement, each 
capable of tilting at an angle of ±12◦ to denote on/off states. This en
ables selectively reflecting laser light into the photoresist and thereby 
create a patterned beam. The one-dimensional (1D) diffraction inherent 
to the DMD causes the laser pulse to be spectrally dispersed, resulting in 
temporal pulse elongation and a reduction in peak intensity. An f 
= 180 mm achromatic doublet (Thorlabs AC508–180-AB) in conjunc
tion with a dichroic mirror (Eskma Optics 045–800) collects these 
scattered components and routes them to the back aperture of a 1.49 
numerical aperture (NA) Nikon 100 × objective lens affixed to a piezo- 
based unidirectional objective scanner (PI PIFOC P-725.4CD). The resin- 
immersed objective lens concentrates the beam onto the print plane, 
causing the dispersed wavelengths to reconverge, thus temporally 
compressing the pulse and reinstating high photon density. This 
spatiotemporal focusing improves confinement of the pulse intensity to 
thin layers inside the photoresist. The resin consists of a (2E,6E)-2,6-Bis 
(4-(dibutylamino)benzylidene)-4-methylcyclohexanone (BBK)[31]
photoinitiator, at 0.38 mol% in PETA monomer as previously reported 
[16,17]. The mixture is placed in drops onto a microscope glass slide 
(Fisher Scientific Cat. No. 125441), which has been pre-cleaned by 
wiping with acetone, followed by consecutive 5-minute baths in alconox 
and acetone, and then dried with nitrogen gas.

After the printing process, the samples are immersed in a magneti
cally stirred SU-8 bath at 1150 rpm for about 20 min, followed by a 
short immersion in isopropanol and drying under a nitrogen stream. 
Subsequently, the structures are sputter-coated with an Au/Pd mixture 
and reintroduced to the same experimental setup for imaging, as indi
cated in Fig. 1(b). This metallic coating improves the contrast between 
the glass substrate and the three-dimensional printed microstructures in 
brightfield transmission microscopy [17]. A 660 nm LED source (Thor
labs M660L3-C3) is focused onto the sample plane using a Nikon 
100 × ELWD objective (NA = 0.8). The transmitted light is demagnified 
using a 0.9 NA Olympus 100 × objective that is affixed to the piezo 
objective scanner. It is then channeled to a CMOS camera (FLIR 
GS3-U3–32S4M) for image acquisition using a 50/50 beam splitter 
(Thorlabs BSW27) and an f = 100 mm lens (Thorlabs LA1509-B). The 
photos of the printed structures are further processed with the OpenCV 
Python package [32]. Otsu’s thresholding method [33] is subsequently 
used to perform binarization, which calculates the optimal threshold 
level by maximizing inter-class variance pixel intensities in the bimodal 
grayscale histogram, thereby segmenting the object in question from the 
background. Prior research benchmark [17] comparing measurements 
from this brightfield microscopy apparatus to scanning electron micro
scopy (SEM) estimations of 2–13 µm patterns printed on the same 

I.R. Jamil et al.                                                                                                                                                                                                                                  Additive Manufacturing 110 (2025) 104929 

2 



projection multiphoton printing system revealed that the optical method 
generally underestimated SEM bounding-box dimensions by only about 
200 nm on average, with a slight overestimation for the smallest fea
tures as the diffraction limit is approached. Furthermore, since bright
field microscopy is significantly more cost-effective and less 
time-consuming, it is used in this study to collect images of printed 
samples.

To print and photograph thousands of individual microstructures, 
both operations are automated using a three-axis air-bearing translation 
stage (Aerotech ABL1000 series), which is controlled by LabVIEW and 
Aerotech’s NVIEW stage management software. To achieve parallel 
autofocusing, a 632.8 nm, 5 mW Helium-Neon laser beam is guided 
along the same optical path, and its reflection is directed to an inde
pendent camera (ZWO ASI183MC). The system utilizes real-time image 
processing in LabVIEW to position the piezo objective scanner such that 
the focal plane of the objective is maintained at the substrate surface. 
Integrating these technologies enables precise focusing with high 
throughput during printing and subsequent imaging.

2.2. Dataset generation

Micromirrors are activated to on/off states by a two-dimensional 

binary image of black-and-white pixels that is provided to the DMD. 
Native oxygen is consumed for radical generation as the shaped beam 
from DMD is directed onto the print plane [16,34,35]. Depletion of 
oxygen is a critical prerequisite for the initiation of multi-photon poly
merization [19,20]. Nevertheless, the unconstrained diffusion of oxygen 
from the ambient environment contributes to the polymerization inhi
bition at the structure’s boundaries [36], ultimately resulting in 
under-printed regions. In Fig. 1(c), the phenomenon is demonstrated by 
overlapping and comparing the DMD input target patterns with the 
corresponding binarized printed masks, highlighting the disparities in 
the error columns. To create an accurate surrogate for this printing 
process, a DNN model needs to be guided in understanding how micro- 
and nanoscale feature qualities impact or correct for dimensional im
perfections, ultimately serving as the foundation for efficient inverse 
modeling.

For training the supervised autoencoder, a set of DMD input patterns 
and their resulting printed shapes are needed. Fig. 2 depicts nine basic 
geometric forms—ellipses, rectangles, triangles, pentagons, hexagons, 
heptagons, octagons, crosses, and multi-edged stars (5–8 vertices)— 
used to train and evaluate the ML model. These 2D designs are then 
subjected to radial and corner warping techniques to alleviate the under- 
printing difficulties [17]. Radial warping expands or contracts the 

Fig. 1. Overview of the multiphoton projection printing workflow. a. Schematic depiction of the projection printing process, in which a high-intensity femtosecond 
πshaper transformed flat-top laser beam is shaped by a digital micromirror device (DMD) and projected into a photosensitive resin. The non-linear nature of two- 
photon absorption enables polymerization to occur only at the region of highest intensity - the print plane. b. Illustration of the same printing setup configured 
for microscopic imaging of the post development printed structures. c. Comparison between input DMD patterns and actual printed structures reveals a systematic 
underprinting of approximately 0.7 µm on each side and more pronounced deviations near corners. The scale bars are 2 µm in length.
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pattern to compensate for the bending of straight edges induced by 
nonuniform shrinkage and oxygen inhibition. It does this by mapping 
the radial coordinate system (with the shape centroid as the origin) onto 
a transformed system, as defined by [x, y] = [rpcosθ, rpsinθ]. Here, the 
radius is elevated to an exponential power p, the radial warping 
parameter. In polar coordinates, the location [x, y] denotes a point on a 
shape’s perimeter, defined by the radial distance r from the origin and 
the angle coordinate θ from the origin, as illustrated in Fig. 2(a). Convex 
corner warping alters the exterior corners in a way that preserves fine 
details that might otherwise be lost to diffraction and inhibition effects. 
By designating the corner as the origin, this warping applies the equa
tion y = a(x − b)− c

− 1. Here, parameters a and b are defined so that the 
corner warping distance d corresponds to the distance between two 
pertinent points along the contour. Another point that is the furthest 
from the origin is selected such that its distance is equivalent to the 
distance of the contour points from the origin. A curvature profile is then 
applied between these points, with the parameter c determining the 
direction and magnitude, as shown in Fig. 2(b). To retain the sharpness 
of interior edges, the corner warping must be reversed for concave 
corners for stars and crosses in Fig. 2(c), which exhibit rounding of in
ternal corners due to diffraction and proximity effects [36].

To enhance the generalization of the models, the parametrization 
scheme was further extended to methodically incorporate a wide range 
of geometric and dimensional characteristics into the training data. 
Modifying shape sizes from 3 µm to 10 µm imparts a definitive scale to 
the model, while aspect ratios between 0.5 and 1.0 rectify distorted 
dimensions by adjusting the width in relation to height. Angular 
asymmetry is integrated by rotating shapes from − 180◦ to 180◦, 
whereas thin features are presented by modifying the arm widths of 
crosses. All the parameters are sampled using a Sobol sequence [37], a 
quasi-random, low-discrepancy technique that evenly traverses a 

high-dimensional design space. Table 1 lists the ranges of each of the 
shape parameters varied using the Sobol sequence. Integrating varia
tions in size, rotation, and skewness directly into the pattern generation 
scheme for experimentally obtaining data obviates the need for addi
tional data augmentation during post-processing of the printed results. 
This approach enables deep learning models to properly learn intrinsic 
spatial, systemic, and printing dynamic effects.

Our goal in this investigation is to determine an optimal shape 
located within this parameter space. By training the model on simpler 
shapes scattered over this space, it can gain insight to optimize and tailor 
individual structural sections, allowing it to generate more complicated 
DMD input patterns by means of localized design alterations to print 
desired target geometries. Restricting the investigation to a single 
photopolymer BBK would further isolate the geometric effects from 
external variables such as the influence of chemical compositions. For 
this study, 3390 DMD patterns were generated and printed using the 
experimental setup at a constant laser power of 24 mW at the print plane 
with an exposure duration of 10 ms. The exposure condition was pre
viously established for the projection multiphoton printing system, 

Fig. 2. Parametric variation of fundamental shapes and their geometric parameters. Shown are representative examples of some basic shapes: square, triangle, star, 
ellipse, cross, and polygons (5–8 edges), along with key parameters such as radial warp, corner warps, aspect ratio, arm width, angle of rotation, and sizes. These 
parameters were systematically varied using a Sobol sequence, generating a comprehensive dataset for training and validating the deep learning models.

Table 1 
Sobol sequence range of shape parameters.

Parameter Sobol Range
Minimum Maximum

size (lµm) 3.0 µm 10.0 µm
radial warping (p) 0.9 1.1
corner warping distance (d) 0 pixels 100 pixels
corner warping curvature (c) − 0.9 0.9
angle of rotation (θ) − 180◦ 180◦

aspect ratio (w/h) 0.5 1.0
star/polygon vertices (n) 5 8
cross arm width (t) 0.5 µm 5.0 µm
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where the output qualities remain consistent above a certain threshold 
dosage (laser power × exposure duration) [17]. At present, this dosage 
condition provides an ideal printability window that balances effec
tiveness across a wide range of shape sizes. Below this dosage, small 
structures do not polymerize reliably. Exceeding this threshold, larger 

structures are susceptible to over polymerization, resulting in structural 
warping and possibly detachment from the substrate. The DMD patterns 
and their associated binarized images of the printed structures consti
tuted a full dataset that was partitioned into an 80:20 ratio for training 
and validating the deep learning models, respectively. To assess model 

Fig. 3. Architectural overview of the Deep ResNet51-AE: a ResNet-based autoencoder. The model follows an encoder-decoder structure with residual blocks for 
efficient feature extraction and reconstruction. The Init Block processes the input print pattern using convolutional and max-pooling layers. The encoder consists of 
downsampling blocks with multiple residual blocks to prevent information loss and improve gradient flow. The bottleneck fully connected region compresses the 
extracted features before passing them to the decoder, which mirrors the encoder structure with transposed convolutional and upsampling layers. Inter and intra skip 
connections facilitate information flow across corresponding encoder-decoder layers, aiding in high-fidelity reconstruction. The End Block applies a sigmoid acti
vation to generate the predicted pattern output.
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performance, two independent test datasets were generated and printed. 
Test dataset A was printed at the average print plane power of 24 mW 
and 10 ms exposure as the training dataset. Test dataset B was printed 
after improvements to the system had been implemented to reduce the 
laser pulse duration. Consequently, a lower average print-plane power 
of 11 mW was required to achieve similar peak intensities at the same 
exposure period. In total, the two testing sets equate to the size of the 
validation set and encompass a variety of geometries, including intricate 
curvilinear designs, fractals, gears, and chiral metamaterial-inspired 
patterns, as well as basic reference shapes.

2.3. Autoencoder framework

An autoencoder is a neural network architecture trained to learn a 
compressed representation of input data (the encoding) and subse
quently reconstruct that data from it (the decoding). In our case, the 
autoencoder takes in a 2D DMD input layer pattern and outputs a 
binarized representation of the printed result. By training on this 
transformation, the network functions as a surrogate that predicts the 
printed geometry for a given input pattern, while training on reversed 
inputs and outputs converts it into an inverse model that generates a 
compensated DMD pattern for printing any user-defined shape. Fig. 3
illustrates how our ResNet-based autoencoder builds upon residual 
learning principles to enhance encoder–decoder functionality for image- 
to-image translation. The model is implemented in Python using the 
PyTorch library [38]. The encoder resides on the left side, and the 
decoder on the right side, with both being derived from the ResNet50 
framework [30]. Originally developed for image classification, ResNets 
alleviate vanishing gradients [39], a serious hurdle in training very deep 
neural networks, by incorporating residual blocks. Additionally, having 
the DMD pattern and the binary mask of the printed structure on the 
same camera plane provides flexibility: the network can be inverted by 
simply interchanging the input and output during training. Conse
quently, our ResNet51-AE serves as a surrogate model for predicting 
printed geometry for a given input pattern and as an inverse model to 
generate pre-compensated DMD patterns for printing any user-defined 
shape, hence enabling enhanced dimensional precision in 
multi-photon additive manufacturing.

The encoder and the decoder in Fig. 3 consist of an initialization 
block (Init Block) and an End block, respectively, followed by four 
Downsampling/Upsampling – recurring Residual block pairs, with 
mirroring sets of convolution/transposed convolution operations. The 
number of times each Residual blocks are repeated is noted within each 
block pair (for example: Residual Block × 2). In a forward pass through 
the model, the encoder convolutions compress the input binary image 
into a 1D vector representation that is passed onto a fully connected 
neural network region at the bottom of Fig. 3. The decoder path begins 
by taking in this latent vector representation and reconstructing a tensor 
for the transposed convolutions to upsample. The fully decoded (pre
dicted) image at the end of this pathway is then compared to the ground 
truth binary image (reference). The difference between the predicted 
and reference images is then used to update the tunable kernel weights 
(discussed below) during the backpropagation pass across the model. 
Throughout the training process, several forward and backpropagation 
passes are made using the images in the training datasets until minimal 
disparity is achieved between the predicted and reference images.

The exploded views of the first few blocks of the encoder on the 
leftmost side and the last few blocks of the decoder on the rightmost side 
are also illustrated in Fig. 3 to provide more details. The Init block begins 
with a convolution layer Conv9 × 9, 3, s = 2, A (kernel size: 9 ×9, channel 
depth: 3, stride: 2, A: Relu activation) to convert the input binary image 
(height: 456 pixels × width: 456 pixels × channel depth: 1) at the camera 
coordinate space to the input size that a standard ResNet-based archi
tecture expects. A similar transposed convolution: T.Conv10 × 10, 1, 
s = 2 with a sigmoid activation (sig in Fig. 3) in the End Block at the end 
of the decoder upsample the final tensor to a ground truth pixel-level 

image. This avoids the need for rescaling, thereby preserving the 
spatial fidelity of microstructures and preventing the generation of un
wanted artifacts. During a convolution operation, a kernel with di
mensions (height: k1× width: k2) slides across the input image tensor to 
extract its hierarchical features. Each kernel contains k1×k2 learnable 
weights that are updated during the backpropagation step of the training 
process. The parameter stride (s) determines how many pixels the kernel 
shifts along each direction of the input tensor. Transposed convolutions 
on the decoder side in Fig. 3 essentially reverse this operation to 
upsample its inputs. ReLU (Rectified Linear Unit) activations [40]
associated with each convolution/transposed convolution generates 
non-linearity by zeroing out negative values in the convoluted feature 
map to aid in learning intricate dependencies (to be explained in Sup
plemental Note 1). Having the ground truth as a binary image allows the 
final transposed convolution in the End block in Fig. 3 to use sigmoid 
activation for calculating a probability for each pixel to be either 1 
(white) or 0 (black). The Init and End blocks in Fig. 3 also contain 
another class of operations called Max-Pooling and Max-Unpooling. Max 
pooling operates similarly to convolution but only passes on the largest 
value within each kernel window, essentially downsampling feature 
maps and reducing computational complexity by incurring no additional 
learnable weights. Max unpooling uses the spatial location of these 
maximums to return the upsampled values to the appropriate co
ordinates while filling all other positions with zeros, thus reconstructing 
high-resolution outputs from low-resolution inputs.

As the name suggests, the purpose of the Downsampling and 
Upsampling blocks is to decrease and increase the 2D spatial dimensions 
of an image tensor using a series of convolutions and transposed con
volutions, respectively. The procedures described within each of the four 
Downsampling/Upsampling - Residual block pairs in Fig. 3 detail the 
convolutions/transposed convolutions that are executed sequentially. 
For instance, in the second convolution of the exploded Downsampling 

block (blue box) on the left side of Fig. 3

⎛

⎝

⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤

⎦

⎞

⎠: 3 × 3 

describes the size of kernels (k1 × k2) that project the spatial information 
into 64 feature maps/channels (c). The Downsampling blocks are 
accompanied by a bypass link (dashed arrow) that applies an additional 
convolution (Conv1 ×1, c) to align the shape of the side routed data 
before elementwise adding it to the output from the other convolutions 
before applying the activation function. The encoder passes the resulting 
tensor onwards to the next residual block as well as a copy to the decoder 
upsampling block on the mirroring side via inter encoder-decoder skip 
connections (white arrows in Fig. 3). The Residual Blocks as illustrated 
in Fig. 3 apply similar successive convolutional operations but without 
changing the spatial tensor shapes. They are also complemented with 
direct residual skip connections that aid in resolving vanishing gradient 
problems (explained in Supplemental Note 1) by providing a straight
forward pathway for gradients to flow back during the backpropagation 
steps. On the other hand, the Upsampling block employs a transposed 
convolution (T.Conv1 ×1, c) on the encoder-decoder skip connection 
data (white arrows) to convey fine details from the encoder to the 
decoder workflow, similar to an UNet implementation [41]. The 
autoencoder training process is further enhanced with additional opti
mization techniques such as batch normalizations (BN) [42] (to be 
explained in Supplemental Note 1) implemented within each layer.

The subsequent Downsampling/Upsampling – Residual block pairs 
(red, orange, and teal blocks) in Fig. 3 repeat the processes described 
above, having the same kernel size aspects (to downsize the 2D spatial 
resolution in the encoder and upsize in the decoder) but with progres
sively larger feature maps. The final encoded tensor values are spatially 
averaged using an average pooling layer, which evaluates the mean 
value within each local area of the feature map, therefore reducing the 
spatial dimensions while preserving the most relevant information. The 
resulting feature maps are then flattened along the channel dimensions 
to be passed onto a set of dense neural layers containing 2048, 1000, and 
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another 2048 neurons consecutively. This encoder-decoder linking fully 
connected neural region acts as a bottleneck, forcing the model to only 
learn the essential features from the input data. A succeeding transposed 
convolution unflattens the neurons and prepares the tensor for the 
decoder operations to process. In total, there are 51 operations layers in 
each half of the encoder-neural-decoder pathways, giving our custom 
autoencoder the name ResNet51-AE.

3. Results and discussions

3.1. Comparing models

To find an effective autoencoder for both surrogate and inverse 
models, we analyzed various existing and custom-built autoencoder 
models. Four architectures: R2 U-Net, AlexNet AE, Deep ResNet35-AE, 
and Deep ResNet51-AE are benchmarked for surrogate modeling. R2 
U-Net [27] is built upon the classic UNet architecture [26] using 
recurrent residual convolution units that outperformed the UNet in 
several biomedical image segmentation tasks. AlexNet autoencoder, 
which was introduced in the supplemental notes in one of our previous 
works [17] to compare with a Bayesian optimization scheme, was con
structed by combining two AlexNets [43] end-on-end with UNet-like 
skip connections between the encoder and decoder. Deep 
ResNet35-AE, derived from the ResNet34 network [30], has a similar 
architecture to Deep ResNet51-AE but with different types and numbers 
of residual blocks. The Deep ResNet51-AE uses bottleneck residual 
blocks consisting of three sequential convolutional operations (Con
v1 ×1, c/4 - Conv3 ×3, c/4 - Conv1 ×1, c) as illustrated in the exploded 
view of the residual block in Fig. 3 and described in Section 2.3. On the 
other hand, Deep ResNet35-AE uses the basic residual block type con
sisting of two consecutive convolutions (Conv3 ×3, c - Conv3 ×3, c) in 
addition to a residual connection. Custom models give us the flexibility 
of tailoring the layers to meet our specific needs. For all tested archi
tectures, we add additional convolution and transposed convolution 
layers at the beginning and end to adjust the original image dimensions 
to the input/output sizes expected by each model, as was described from 
the Deep ResNet51-AE model in Section 2.3. Additional information on 
the model architectures can be found in Supplemental Note 2.

Each of the models described above was trained on an Nvidia 
GeForce RTX 3090 with 24 GB of VRAM using the training dataset, and 
hyperparameters were tuned using the validation dataset. To compare 
the performance of these autoencoders, they were inferred without 
further fine-tuning or re-training on the total test dataset, encompassing 
test dataset A (generated under the same print conditions as the training 
dataset) and test dataset B (printed using the improved laser system). 
Fig. 4 presents the statistics of the analysis. Each sub-figure utilizes the 
top vertical axis to illustrate the accuracy score (red bars with a 
maximum at 1.0) and F1 score (orange bars with a maximum at 1.0). 
These criteria, which are extensively used in classifier evaluations [44]
have been repurposed to assess pixel-level predictions in our binary 
images. Accuracy score indicates the proportion of correctly classified 
pixels relative to the total pixel count: 

Accuracy Score =
TP + TN

TP + FP + TN + FN
(1) 

where TP (true positives) and TN (true negatives) correspond to 
correctly predicted white and black pixels, respectively, while FP (false 
positives) and FN (false negatives) refer to incorrect predictions of 
black-to-white and white-to-black pixels. Accuracy score thus provides 
insight into the extent to which the predicted morphologies encompass 
the target area (areal fidelity). By contrast, the F1 score is the harmonic 
mean of Precision and Recall: 

F1Score = 2 ×
Precision × Recall
Precision + Recall

(2) 

Precision quantifies the accuracy with which a model identifies 
white pixels, while recall reflects the capability of the model to identify 
white pixels: 

Precision =
TP

TP + FP
(3) 

Recall =
TP

TP + FN
(4) 

In our application, any overestimation of shape edges creates excess 
white pixels (False Positives), whereas underestimation yields missing 

Fig. 4. Performance evaluation of various autoencoder architectures on the test datasets A and B. The top scales represent the accuracy score (measuring areal 
fidelity) and the F1 score (measuring perimetric precision). The bottom scales represent the training time in minutes and floating-point arithmetic operations (FLOPs) 
in Giga Multiply-Accumulate Operations (GMacs), with the axis being normalized by their respective maximum values. Longer training times and higher FLOPs imply 
greater computational and memory costs. a. Surrogate model evaluations compare an established biomedical image-segmentation autoencoder, R2 U-Net, with our 
custom AlexNet autoencoder (AE), Deep ResNet35-AE, and Deep ResNet51-AE developed by concatenating end-to-end two popular image classifiers of the same 
name, forming the encoder and decoder segments. b. Inverse model evaluations reveal increasing model complexity from AlexNet autoencoder to Deep ResNet153- 
AE comes at the cost of longer training durations, larger computational and memory requirements, with marginal gain in accuracy and F1 scores. The Deep ResNet51- 
AE strikes a favorable balance between computational efficiency and predictive performance, making it a practical choice for both surrogate and inverse modeling.
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white pixels (False Negatives). Consequently, the F1 score estimates 
perimetric fidelity, i.e., how accurately the predicted edges match the 
ground truth.

The lower vertical axes in Fig. 4 convey the training period in mi
nutes (blue bars) and the floating-point operations (FLOPs) (calculated 
using the ptflops library [45]) in giga multiply-accumulate (GMac) op
erations (teal bars), both normalized by their maximum observed values 
to allow for a fair comparison of different models. Training time is the 
product of the length of time required to pass the entire dataset through 
the model once in each epoch (given the hyper-tuned learning rate and 
batch size), and the total number of epochs necessary to achieve mini
mal validation loss. FLOPs, together with model training intervals, give 
insight into the computational expense necessary to train a 
deep-learning model. Higher FLOPs indicate higher computational and 
memory costs.

It is apparent from Fig. 4(a) that the accuracy and F1 score of all 4 
surrogate models are comparable, indicating each of them has sufficient 
model parameters to comprehend the oxygen inhibition dynamics. In 
terms of computational efficiency, R2 U-Net and Deep ResNet51-AE 
train much slower than the others, partly due to the higher FLOPs and 
partly due to higher/lower model capacity to learn from the training 
data effectively. Despite the cost, Deep ResNet51-AE manages to achieve 
superior surrogate predictive performance, closely matching that of 
Deep ResNet35-AE, which consistently exhibits the most optimal sur
rogate performance among the models evaluated. However, the trivial 
disparity in Accuracy and F1 scores among the models dictates that any 
of the models can serve as a surrogate for the printing process.

Fig. 4(b) presents a comparable analysis for inverse modelling and 
extends the ResNet-based networks to a deeper variant: Deep 
ResNet153-AE, which is constructed from the ResNet152 network [30]. 
Here, the deeper models achieve incremental gains in accuracy and F1 
score but incur a pronounced increase in computing need (FLOPs and 
training time). While the most extensive network (Deep ResNet153-AE) 
exhibits a marginally higher precision, the additional cost may not be 
justified when resources or rapid iteration cycles are a priority. 
Conversely, shallower networks (AlexNet AE and Deep ResNet35 AE) 
reflect the limitations of a lower model capacity in inverse predictions, 
as evident by their significantly reduced Accuracy and F1 scores.

In general, Fig. 4 exhibits how increasing model complexity 

improves predictive reliability but heightens the computation cost. An 
in-depth comparison of all the model prediction/printing results is 
presented in Supplemental Note 3. Among the evaluated models, Deep 
ResNet51-AE appears to find a practical balance between Accuracy, F1 
score, and computational workload for both surrogate and inverse pre
dictions, indicating that a moderately deep residual architecture can 
produce robust results without requiring excessive training time or 
computing power. The prediction latency of the ResNet51-AE model, 
demonstrated in Supplemental Note 4, implies that once the model 
weights are loaded into memory, it can potentially optimize each 
pattern in as little as 0.06 s, facilitating high-throughput printing. 
Hence, the Deep ResNet51-AE is chosen to be the autoencoder used for 
this work.

3.2. Surrogate and inverse predictions

Fig. 5 depicts the performance of the Deep ResNet51-AE when used 
as a surrogate model. The DMD input patterns in Columns 1 and 5 
(derived from test dataset A) were not used for training or validation of 
the model, thereby allowing for an unbiased assessment of the model’s 
generalizability. A 2 µm scale bar is included in each image. The 
resulting polymerized structures for these DMD patterns are shown in 
the printed columns (Columns 2 and 6) of Fig. 5. It is evident from the 
figure that the unaltered DMD patterns result in under-printing of 
approximately 0.7 µm on each side and more at the corners due to an 
oxygen dead zone as was seen previously in [17]. The prediction col
umns (Columns 3 and 7) illustrate the autoencoder’s optimal recon
struction of the printed shape based on the original DMD input. The 
error columns (Columns 4 and 8) indicate disparities between the esti
mated and actual prints. Green contours indicate locations where the 
prediction is undersized in comparison to the print, whereas magenta 
contours indicate areas where the prediction is oversized relative to the 
print. This color-coding facilitates the identification of contours around 
the shape that diverge from the anticipated boundaries. The small 
perimeter errors observable in Fig. 5 indicate that the surrogate Deep 
ResNet51-AE model can effectively predict the printed shape of multiple 
test patterns with various dimensions.

Perimeter error, the area of the under and over-predicted regions 
(green and magenta pixels in Columns 4 and 8 in Fig. 5) divided by the 

Fig. 5. Qualitative results from the Deep ResNet51-AE surrogate model. Columns 1 & 5 showcase some target patterns derived from test dataset A, which are similar 
to training data but previously unseen by the surrogate model. Visualization of the corresponding printed results is depicted in Columns 2 & 6. Columns 3 & 7 display 
the binary printed shapes predicted by the autoencoder. Columns 4 & 8 compare the binarized print masks with the model predictions. The scale bars are 2 µm 
in length.
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perimeter of the printed shape (in Column 2) measured in µm, is used to 
quantitatively evaluate the accuracy of the surrogate model. For the 
shapes displayed in Fig. 5, the autoencoder is able to predict print shapes 
from DMD patterns with a perimeter error of 0.031–0.192 µm, as listed 
in Table 2. This is comparable to about 1–3 demagnified camera pixels 
(each pixel size: 62 nm) and falls within the previously determined 
measurement accuracy [17].

The trained inverse Deep ResNet51-AE model’s workflow is illus
trated in Fig. 6, which seeks to create pre-compensated DMD patterns 
(Column 4) for particular target shapes (Column 1) taken from the un
seen test dataset A. The under-printing due to oxygen inhibition is again 
observed for the uncompensated DMD patterns. This is demonstrated by 
the initial print column (Column 2) and its initial error column (Column 
3) when compared to the target patterns from Column 1. The inverse 
model’s optimized patterns (Column 4) are designed to compensate for 
these dimensional inaccuracies. The optimized prints (Column 5) for 
these predicted patterns, when compared with the target shapes (Col
umn 1), show a significant reduction in errors (Column 6). It is note
worthy that some of the imperfections visible in Column 6 can be 
attributed to imaging artifacts such as shadowing or uneven illumina
tion, which can affect visual comparison but not the underlying integrity 
of the prints. Nonetheless, the substantial reduction in the green and 
magenta contours illustrates the enhancement that has been achieved 
with the inverse autoencoder’s predicted patterns.

The asymmetrical DMD patterns apparent in Column 4 in Fig. 6
portray a learnt adaptation by the model, rather than a defect. Despite 
the symmetrical nature of the target shapes, the printing system’s 
inherent numerous asymmetries, such as 1-dimensional diffraction from 
the DMD micromirrors, laser intensity non-uniformity, and minor opti
cal misalignments, culminate in disproportionate under-printed errors 
in the printed structures in Column 2. By spatially altering the patterns 
in a manner that may seem skewed, the model learns to discern and 
compensate for these system-level biases, thus ensuring that the final 
printed shapes in Column 5 are closer to the symmetric target.

For the inverse model, the perimeter error is computed by dividing 
the area of the under and over-printed regions (green and magenta 
pixels in Columns 3 and 6) by the perimeter of the target pattern (in 
Column 1) for the initial and optimized structures in Fig. 6. For shape 
sizes greater than 4 µm shown in Fig. 6, the inverse Deep ResNet51-AE is 
able to reduce the average perimeter error from 0.502 µm to 0.118 µm, 
as tabulated in Table 3, which is again within to 1–3 demagnified 
camera pixels and within the measurement accuracy [17]. For shapes 
smaller than 4 µm (the circular dot in Fig. 6), the resulting perimeter 
error improves from 0.362 µm to 0.231 µm at the current fixed power 
and exposure. It may be possible to enhance the printing of smaller 
structures by training the autoencoder on variable exposure patterns 
generated from grey-scaling methods. Nonetheless, Fig. 6 demonstrates 
that the inverse model, in general, can anticipate a DMD pattern that 
compensates for oxygen inhibition and other systematic distortions, 
resulting in a final print that more closely resembles the target geometry.

Fig. 5 and 6, along with Table 1 and 2, collectively demonstrate the 
dual functionality of the Deep ResNet51-AE architecture. In surrogate 
mode, it can reliably forecast the final print from an input pattern, while 
in inverse mode, it can alter the DMD input pattern to significantly 
reduce the observed dimensional imperfections. The intuitive 

representation of both undersized and oversized visual outcomes cor
roborates the previously provided quantitative accuracy and F1 mea
surements, demonstrating that, despite slight boundary discrepancies, 
the model continually performs well across diverse shape complexity 
and sizes. Supplemental Note 5 further verifies the multi-scale predictive 
capabilities of the Deep ResNet51-AE model architecture by optimizing 
the same patterns at different length scales.

3.3. Complex shape predictions

The performance of the Deep ResNet51-AE’s inverse and surrogate 
model for more complex target patterns (derived from both test datasets 
A and B), which are constructed by concatenating multiple simpler 
shapes, is illustrated in Fig. 7. The complexity of these shapes allows us 
to assess the models’ ability to generalize to novel, previously unex
plored (not trained upon) geometries. In addition to the actual printed 
results and associated errors, each column in Fig. 7 offers a step-by-step 
visualization of both inverse and surrogate predictions. The feature sizes 
pertinent to micro- and nanoscale manufacturing are shown by the 2 µm 
scale bars.

Column 1 in Fig. 7 displays the input target patterns, which are not 
included in the training and validation sets, therefore providing a 
thorough evaluation of the model’s prediction ability. Columns 2 and 3 
show the printed results of the target pattern and the corresponding 
initial errors, respectively. The green overlays indicate underprinted 
regions, and magenta overlays denote overprinted areas, as previously 
described. These columns demonstrate the degree of dimensional 
distortion often resulting from oxygen inhibition or other process- 
related factors. Column 4 presents the optimized DMD pattern pro
duced by the inverse model, aimed at mitigating the errors in Column 3. 
Columns 5 and 6 show the printed results of these pre-compensated 
patterns, along with the binarized error masks when compared to the 
target shapes from Column 1. The qualitative analysis indicates that the 
new prints much more closely align with and approximate the intended 
(target) shape. From a quantitative standpoint, the average perimeter 
error in Fig. 7 is reduced from 0.483 µm in Column 3 to 0.158 µm in 
Column 6, as listed in Table 4. Again, some of these errors can be 
associated with imaging imperfections such as shadowing or unbalanced 
lighting, which may impair visual comparison but not the prints’ overall 
integrity.

Column 7 in Fig. 7 presents the surrogate model’s estimations based 
on the optimized patterns of the inverse model shown in Column 4. It 
illustrates the surrogate’s estimations regarding the anticipated 
appearance of the final structures with the optimized patterns. Column 8 
highlights the minimal discrepancies between the surrogate-inverse 
predictions and the target patterns, with a mean perimeter error of 
about 0.151 µm as inferred from Table 4. This facilitates a direct 
assessment of the model’s accuracy in predicting perimeter dimensions 
for intricate, multi-feature designs.

In general, Fig. 7 illustrates that the Deep ResNet51-AE performs well 
with complex shapes, enhancing both inverse and surrogate predictions 
while reducing initial shape errors. The relatively small discrepancies 
shown by the colored overlays in the optimized and predicted results 
demonstrate that, despite the persistence of some minor imperfections, 
the proposed approach significantly improves accuracy relative to the 
initial prints. This improvement is crucial in micro- and nanoscale 3D 
printing, where even slight geometric variations may significantly in
fluence performance.

The logical progression for projection multiphoton lithography is to 
expand our optimization methodology from planar patterns to 3D 
structures. Although the present Deep ResNet51-AE architecture has the 
potential to encode height information using higher-bit-depth input and 
output images, its efficacy is limited by our data-acquisition technique. 
Recent advancements in in-situ 3D measurement for multiphoton 
printing [46,47] provide a plausible solution. Integrating such volu
metric measurement methods into our projection system will provide 

Table 2 
Surrogate model prediction perimeter error on patterns taken from test dataset 
A.

Shape Target Size (µm) Perimeter Error (µm)

ellipse 3.0 0.031
rectangle 6.5 0.120
cross 10.0 0.192
hexagon 6.5 0.090
triangle 6.5 0.087
star 10.0 0.121
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the training data required to capture axial resolution effects and tem
poral exposure dynamics, therefore aiding the model in understanding 
layer-by-layer interactions for 2.5D-3D profile optimizations.

4. Conclusion

This study introduced a Deep ResNet51-AE framework for both 
surrogate and inverse modeling in projection multi-photon lithography. 
By systematically training on a broad spectrum of shapes and employing 
advanced residual learning strategies, the autoencoder can accurately 

predict the final printed structure (surrogate mode) and generate pre- 
compensated DMD patterns (inverse mode) to address dimensional in
consistencies in printed results. Experimental evaluations on complex, 
multi-feature test geometries demonstrated notable perimeter fidelity 
enhancements, reducing perimeter errors to as low as 0.07 µm for 
structures exceeding 4 µm in size. Even smaller shapes, which naturally 
exhibit higher print variability under the current setup, still benefited 
from the proposed approach, achieving improved dimensional accuracy 
compared to the conventional approach. These findings underscore the 
effectiveness of deep learning in elevating micro- and nanoscale additive 
manufacturing, as evidenced by its adaptability to local process per
turbations and the ability to manage substantially more intricate designs 
than those used in training, where the inverse autoencoder slashed 
perimeter errors by a factor of three. Data-driven compensation emerges 
as a crucial strategy, given the profound effect that even minor geo
metric deviations can have on overall functionality at these scales. 
Furthermore, the Deep ResNet51-AE retains strong surrogate modeling 
capabilities, achieving equivalent predictive precision on its own inverse 
DMD predictions. This opens possibilities for data augmentation and 
simulation-based investigations aimed at unraveling the complex pho
topolymerization dynamics inherent to 3D multi-photon lithography. 
Ultimately, the Deep ResNet51-AE surrogate-inverse technique offers a 
promising solution to enhancing accuracy in micro- and nano-scale 

Fig. 6. Qualitative results from the Deep ResNet51-AE inverse model. Column 1 showcases some simple target patterns derived from test dataset A of various sizes 
that are similar to training shapes but previously unseen by the inverse model. Visualization of the corresponding printed results and the initial errors are depicted in 
columns 2–3. Column 4 displays the optimal patterns predicted by the inverse model. Columns 5–6 demonstrate the subsequent optimized prints and their binar
izations compared with the target patterns from Column 1. The scale bars are 2 µm in length.

Table 3 
Inverse model prediction perimeter error improvement on patterns taken from 
test dataset A.

Shape Target Size (µm) Perimeter Error

Initial (µm) Optimized (µm)

ellipse 3.0 0.362 0.231
pentagon 6.5 0.586 0.085
octagon 6.5 0.605 0.071
star 6.5 0.346 0.122
rectangle 10.0 0.590 0.079
cross 10.0 0.388 0.161
triangle 10.0 0.496 0.188
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Fig. 7. Complex test shape pattern inverse and surrogate predictions by the Deep ResNet51-AE. Column 1 showcases unseen complex target patterns (derived from 
test datasets A and B) that are formed by compounding several simple shapes. Columns 2–3 visualize the corresponding printed results and the initial printing errors. 
Column 4 displays the optimal pattern predicted by the inverse model. Columns 5–6 demonstrate the subsequent optimized prints and their binarizations compared 
with the target patterns. Column 7 shows the surrogate model prediction on the inverse model pattern estimations, while column 8 compares the subsequent results 
with the target shapes. The first six target patterns are taken from the test dataset A, whereas the butterfly, leaf, Koch fractal, and spur gear patterns originate from 
test dataset B. The scale bars are 2 µm in length.
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additive manufacturing, overcoming key limitations in existing fabri
cation methods and supporting future advancements in high precision 
engineering.
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