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Abstract: Split ring resonators (SRR) are optical nanostructures that have received a lot of 
attention for their ability to support magnetic resonance and for their potential use as 
materials with negative dielectric constant. In this work, we design SRRs as near-field 
transducers (NFT) for generating a nanoscale hotspot in heat-assisted magnetic recording 
(HAMR), which is considered a candidate for the next-generation data storage technology. 
The underlying mechanisms for the generation of hotspot and the dependence on wavelength 
and geometry of the SRR structure are studied. Optical and thermal performance of SRRs 
functioning as NFTs in a HAMR device are evaluated. These structures were fabricated using 
focused ion beam milling. The focusing capability of the SRR is experimentally demonstrated 
using a scattering near field scanning optical microscope. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Generation of a focused optical spot beyond the diffraction limit has received a whole lot of 
attention due to its wide potential applications in the field of nanophotonics [1,2]. Heat 
assisted magnetic recording (HAMR) is one such area of commercial importance where 
nanoscale hotspot plays a significant role in developing the next generation hard disk drives 
[3–6]. Contemporary hard disk drives based on perpendicular magnetic recording technology 
and shingled magnetic recording have reached the practical limits of data storage density due 
to the physical constraint imposed by the superparamagnetic limit of the recording medium 
[7]. Further novelties in the recording medium technology to achieve higher density data 
storage necessitates the use of a medium with higher coercivity, which helps in stabilizing the 
orientations of the magnetic bits at room temperature. But in order to write data into the high 
coercivity medium, its temperature needs to be raised temporarily to lower the medium 
coercivity [8]. HAMR technology promises to address this challenge by locally heating the 
recording medium over a tiny area of tens of nanometers through the use of a plasmonic 
antenna, also known as near field transducer (NFT). This localized heating of the recording 
medium allows the magnetic writing to occur only at the high temperature region. Hence, the 
NFT design needs to be able to generate a tiny hotspot for the proper functioning of a HAMR 
device. 

Producing a sub diffraction limited hotspot generally requires appropriately designed 
subwavelength structures which can be optically excited by properly polarized incident light. 
Several different types of antenna-based and aperture based designs have been proposed as 
NFTs and their optical and thermal performance have been studied for their usage in a 
HAMR device [5,9,10]. NFT designs are geometrically optimized to support localized surface 
plasmon resonance at a specific operating wavelength which helps in enhancing the intensity 
of the near field spot. Typically, an NFT design contains some sharp features such as notches 
and ridges which help in concentrating the electric field through the lightning rod effect for 
producing a very tiny spot size in the near field [11–14]. Also, tiny gaps in a metallic 
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Table 1. Different layers in the recording medium and their properties 

 Optical Properties Thermal Properties 

Material Thick-
ness [nm] 

n k Vertical 
thermal 
conductivity 
(W/mK) 

Lateral 
thermal 
conductivity 
(W/mK) 

Density x 
Specific Heat 
(ρ*cp) (J/m3-K) 
x106 

Heat sink a 
100 0.26 5.28 150 150 3.3 

Interlayer 
15 1.7 0 10 10 1.9 

Storage 
mediumb 10 

Wavelength 
dependent 

7 1.5 3.2 

Media overcoat 
2.5 2.3 0 2 2 1.76 

Air 
2.5 1 0 0.02 0.02 0.001225 

Lube 
1 1 0 0.02 0.02 0.001225 

Head overcoat 
2.5 2.5 0 2 2 1.76 

NFT – Auc 
Variable 

Wavelength 
dependent 

314 314 2.5 

Substrate 
(quartz) 

Infinite 
(600 nm 
in model) 

1.5 0 1 1 2 

aProperties of heat sink material was obtained from ASTC (Advanced Storage Technology Consortium) 
reference sheet. 
bWavelength dependent optical properties of storage medium obtained from [34]. 

cWavelength dependent optical properties of NFT-Au obtained from [35]. 

3.1. Resonant modes of a single loop SRR 

We consider a single loop SRR where, the gap, g is taken as 20 nm, the width of the arms of 
the SRR, w is 30 nm, the length of each of the arms, lx and ly is 90 nm, and the thickness of 
the gold film is taken to be 60 nm. A fillet of radius 5 nm is assumed at the sharp corners of 
the arms of the SRR. The dimensions of the SRR are chosen such that two resonance peaks 
are observed in the range between 600 nm and 1700 nm. For the dimensions described above, 
two resonance peaks, one near 800 nm and other near 1550 nm are observed as shown in Fig. 
4. The two peaks correspond to two different resonance modes supported by the NFT. The 
origin of the resonance modes can be explained from the fields at different wavelengths. 
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