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Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propaga-
tion method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to
calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be
obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory
and the experimental results. The numerical method allows more comprehensive studies of the VFZP param-
eters to achieve higher diffraction efficiency. © 2008 Optical Society of America
OCIS codes: 320.7110, 050.1970, 130.3120, 000.4430, 050.1960, 070.2590.
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. INTRODUCTION
he volume Fresnel zone plate (VFZP) is a focusing device
onsisting of a number of Fresnel zone plate (FZP) layers
nside a transparent medium [1,2]. The FZPs are aligned
n the same optical axis and designed to focus light to a
ingle spot as shown in Fig. 1. By combining a number of
ZPs coherently, the VFZP can achieve much higher dif-

raction efficiency than a conventional FZP. This is espe-
ially useful when an individual FZP can only be fabri-
ated with small diffraction efficiency. The VFZP can be
abricated by femtosecond laser direct writing. This con-
ept was experimentally demonstrated with an eight-
ayer modified VFZP, showing a maximum efficiency of
1.5% [2]. However, the performance of the VFZP is not
ully optimized. The overall diffraction efficiency of the
FZP is determined by many factors such as the number
f FZP layers, fabrication parameters, VFZP design, etc.
he experimental study of VFZP shows that the efficiency
f the VFZP continues to increase up to a certain number
f FZP layers before it starts to drop [1,2]. Consequently,
t is difficult to predict the diffraction efficiency of the
FZP, since light propagation by diffraction through 3D
FZP structures is complicated. A numerical simulation

s necessary to study diffraction behavior of a VFZP. Un-
erstanding how light is diffracted through the VFZP will
elp in predicting the VFZP performance and improving
he VFZP design.

Several numerical methods for diffractive optics simu-
ation are available, including scalar diffraction theory
3], rigorous diffraction theory [4], fast Fourier transform
FFT) methods [5], beam propagation method (BPM) [6],
nite element analysis (FEA) [7], finite-difference time
omain method (FDTD) [8], and so on. These methods
1084-7529/09/010188-7/$15.00 © 2
ave different advantages and limitations for different
imulation conditions, such as near and far fields and
D–2D–3D calculations, which affect the accuracy of the
esults. In the case of the VFZP, the selected method must
mploy small step propagation to enable simulation of
ultiple diffractions through the FZP layers. The split-

tep BPM can handle such a situation where the field ex-
eriences
apid modulation. In particular, the FFT-based BPM
FFT-BPM) utilizes the Fourier transform to locally de-
ompose the entire field into plane waves that are then
ropagated forward in the spectral domain and corrected
t each step in the spatial domain [6,9]. The FFT-based
ethods are preferable since they provide fast calculation
ith high accuracy. When circular symmetry is available,

he Hankel transform (Fourier–Bessel) can be applied so
hat the diffraction analysis becomes 2D �r ,z� instead of
D �x ,y ,z� [9]. The VFZP structure has cylindrical sym-
etry and can utilize the Hankel transform. In this work,

he Hankel transform BPM was developed to study the
erformance of modified VFZPs. The simulation results
losely matched with the experimental results, allowing a
etter understanding of the influence of the VFZP design
arameters.
This paper is organized as follows: the detailed descrip-

ion of the Hankel transform method and its implementa-
ion for VFZP are discussed in Section 2. Section 3 evalu-
tes the accuracy of the Hankel transform results by
omparison with the scalar diffraction theory. Section 4
iscusses the behavior of light diffraction by a VFZP. The
FZP simulation results are discussed and compared
ith the experimental results in Section 5, followed by

onclusions in Section 6.
009 Optical Society of America
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. LIGHT DIFFRACTION SIMULATION BY
HE HANKEL TRANSFORM BEAM
ROPAGATION METHOD
ave propagation through cylindrically symmetrical

tructures can be simulated by using the Hankel trans-
orm and its inverse to convert back and forth between
he spatial domain and the frequency domain. First, the
nput field is transformed to the spectral field, before
ropagating to the image plan by multiplying by a propa-
ation factor, exp�2�jz�1/�2− �fx

2+ fy
2��. Then, the spectral

eld at the image plane is inverse-transformed back to
he spatial field. Mathematically, the inverse Hankel
ransform has the same form as the Hankel transform,
aking the conversion process easy to implement. The
ankel transform of zero order and its inverse are given
y [9,10]

U��� = 2��
0

�

u�r�J0�2�r��rdr, �1a�

u�r� = 2��
0

�

U���J0�2�r���d�, �1b�

here J0 is the Bessel function of the first kind of zero or-
er. The Hankel transform is essentially the 2D continu-
us Fourier transform of a circularly symmetry function.

There are several methods for the numerical calcula-
ion of the Hankel transform. A quasi-discrete Hankel
ransform (QDHT) developed by Guizar-Sicairos and
utiérrez-Vega (2004) assumes a finite frequency domain
nd uses a transformation matrix to quickly compute the
ankel transform as well as the inverse Hankel trans-

orm [10]. The method approximates the input function by
ampling at positions proportional to the positions of the
eros of a Fourier–Bessel function. In addition, the in-
erse Hankel transform with this method is energy pre-
erving as it can reconstruct the original wave field.
ence, this method of Hankel transform computation pre-

ents energy loss, and thereby is suitable for field propa-
ation simulation. We utilized the QDHT method for the
ero-order Hankel transform.

In this work, the simulation of light diffraction through
he VFZP is analyzed in small steps along the propagat-
ng direction z, using the BPM method. Combined with

ig. 1. (Color online) Example of a VFZP having four FZP
ayers.
he Hankel transform, we refer to this method as the
ankel transform BPM (Hankel BPM). This method is
lso demonstrated by Guizar-Sicairos and Gutiérrez-Vega
10]. First, a VFZP is designed by generating a number of
ZP layers in different axial locations. The design of each
ZP layer is different, depending on its location relative

o the overall focusing spot to combine light at the focus
1,2]. Then, a number of radial and axial steps are chosen,
nd the FZP profile at each layer is discretized with a ra-
ial step. The plane wave is converted to a spectral field
nd then propagated step by step in the axial direction.
nly when the wave field is propagated through a FZP

ayer is the complex field (amplitude and phase) con-
olved with the FZP profile. In the simulation model, the
ZPs are separated by a few propagation steps so that

ight interacts with one FZP layer and propagates a few
teps before interacting with the next FZP layer, and so
n. The wave fields are stored at each propagation step.
or example, Fig. 2 shows the simulation model of a

hree-layer VFZP. The model is developed in the cylindri-
al coordinates. For simplicity, each FZP has uniform
hickness and results in phase modulation within a VFZP.
n addition, the radial extent of the simulation is about
wice the size of the VFZP radius and the light outside the
FZP is blocked on the first layer. More importantly, to
void aliasing from the edge of the computational window,
t is necessary to apply zero padding at the edge (bound-
ry).
In the actual fabrication, the VFZP is fabricated inside
medium such as fused silica, so light travels through

wo different media. A simulation can be performed by as-
igning the correct wavelength in fused silica
� /1.46�—the material used for fabricating VFZP [1,2] or
ir during the corresponding propagation step. By apply-
ng different wavelengths, the refraction effect at fused
ilica and air interface is taken into account. Arbitrary
hase and amplitude modulation can be introduced into
he numerical model through the complex-valued trans-

ig. 2. Simulation model of a three-layer VFZP showing propa-
ation steps used by the Hankel BPM calculation. The actual
omputational windows are twice the size of the maximum
adius.
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issivity of the FZP. This allows partial phase FZP or am-
litude FZP to be simulated. The Hankel BPM simulation
esults confirm that a phase FZP has four times the effi-
iency of the amplitude FZP, which agrees with the
heory.

The accuracy of the Hankel BPM depends on the num-
er of sampling steps. We concluded that the radial sam-
ling step size should be smaller than the smallest outer-
ost zone width to avoid nonnegligible error due to

iscretization. The smaller the sampling step size is, the
ore accurate the results that can be generated. On the

ther hand, using a large number of radial steps costs a
ignificantly larger computational time. For a quick com-
arison, a 300-radial-step calculation took about 1.7 s on
2.4 GHz computer with 1 Gbytes of RAM, a 1000-radial-

tep took 12.9 s, and a 3000-radial-step calculation took
03.3 s. As a result, we learned that 1000 radial steps
ere sufficient for our far-field FZP simulation. The re-

ults are much less sensitive to the number of axial steps.
The advantage of the Hankel BPM is the ease of its

mplementation and high numerical efficiency (i.e., com-
utation time per propagation step is small). However,
ince the BPM method calculates the wave field in the for-
ard direction, it cannot resolve the reflection wave.
ince light reflection from a phase-type VFZP is negli-
ible, this is not a major issue. Simulation allows an ar-
itrary VFZP design to be simulated, providing a useful
rediction for the VFZP performance. Furthermore, the
ethod can be extended to simulate noncircular struc-

ures by replacing the Hankel transform with the 2D fast
ourier transform.

. VERIFICATION OF THE HANKEL BEAM
ROPAGATION METHOD

n this section, the accuracy of the Hankel BPM method is
ested by comparing its results with the results of the sca-
ar diffraction theory. Light diffraction by a FZP can be
xplicitly calculated by the Rayleigh–Sommerfeld (RS)
iffraction integral. Therefore, FZP diffraction by the
ankel BPM can be verified by comparing it to the RS dif-

raction result. The RS integral is given by [9]

U�P0� =
1

j���
s

U�P1�
exp�jkr�

r
cos�n� ,r��ds. �2�

here P0 is a point in the observation plane, P1 is in a
oint at the initial plane, r� is the vector pointing from P0
o P1, s is the enclosed surface, n� is a vector normal to the
urface, k is the wave vector, and � is the wavelength. The
S diffraction formula can evaluate the exact light field in

he far field for scalar diffraction. Normally, the RS inte-
ral is difficult to solve analytically without applying the
resnel or Fraunhofer approximation. Cao and Jahns

2004) applied the far-field �f��� assumption, and evalu-
ted the analytical result for FZP focusing [3]. We modi-
ed the method by Cao and Jahns [3] to simulate differ-
nt types of FZPs. The RS method integrates each Fresnel
ing and combines the total field intensity at the focal
lane as follows:
U�R� = �
n=1

N

Un�R�,

Un�R� =
1

�
��

An

f

�2 exp�jk��rdrd�, �3�

here R is the radial location at the focal plane, N is the
umber of rings, f is the focal length of a FZP, and � is a
unction of optical path length given by �= �f2+R2+r2

2Rr cos��−���1/2, � is the angle in the input plane, and �
s the angle in the focal plane. Un is the focal intensity
rom one FZP ring and U is the total focal intensity.

As discussed in our previous work [1,2], “central-ring”
ZPs were fabricated at each zone that have a uniform
idth and were located at the center of each Fresnel zone.
he reasons are to reduce the time needed for fabrication,

o make fabrication more practical with robustness
gainst experimental errors, and to avoid zone overlap-
ing for high numerical aperture (NA) FZPs [2]. The re-
ults of the Hankel BPM and RS integral methods are
omparatively discussed for both the regular and the
entral-ring FZPs. The simulation geometries of the regu-
ar and central-ring FZPs are shown in Figs. 3(a) and
(b), respectively. Both types of FZPs contain 20 Fresnel
ones and have a focal length of 20 mm. The sizes of both
ZPs are 1.4 mm in diameter. The results of the RS
ethod are shown in Figs. 3(c) and 3(d). In Fig. 4, the con-

our plots show propagation of the light intensity by the
ankel BPM method. The gradient of the contour plots
as been reduced by plotting I�1/4� to clearly show the
ropagating pattern. The axial intensity results from both
ethods show very similar results for the regular and

entral-ring FZPs. At the primary focus, the central-ring
ZP has about half of the intensity of the regular FZP, be-
ause of the missing portion in each central-ring zone.
herefore, the efficiency of the central-ring FZP strongly
epends on the zone width.
The appearances of the higher order foci of the two

ZPs are different, and can also be used to verify the ac-
uracy of the Hankel BPM. In the regular FZP, the foci of
he even orders would cancel out completely due to sym-
etric counter phase shifts within one zone (destructive

nterference), while the foci of the odd orders remain.
herefore, the regular FZP only generates odd order foci

at f /3 , f /5 , . . .), and the intensities of the foci decrease
apidly as the number of orders increases. On the other
and, the central-ring FZP does not fully cover the
resnel zones, and all the orders of foci remain with some
fficiency. The intensity at these higher order foci depends
n the zone width of the central-ring FZP. The central-
ing FZP has lower focal intensity because part of the en-
rgy goes to other higher order foci. The results suggest
hat both the Hankel BPM and the RS integral method
orrectly predict the higher order behavior as discussed
reviously.
In summary, for one layer FZP, the Hankel BPM
ethod correctly predicts diffraction output of the regular

nd central-ring FZPs. This suggests that the Hankel
PM method is a suitable tool for FZP simulation, and is
xtended to VFZP simulation in this work.
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. DIFFRACTION ANALYSIS OF VOLUME
RESNEL ZONE PLATE

n this section the Hankel BPM is used to study diffrac-
ion by a VFZP (see Fig. 5). For the simplest case of a two-
ayer VFZP, diffraction of light can be separated into
hree beams as shown in Fig. 6. The first and second
eams are due to single diffraction by FZP1 and FZP2,
nd they are combined at the focus spot as designed. The
hird beam is a result of the first beam diffracted again by
he FZP2, and projected to another spot at a shorter dis-
ance than the focal length. This is equivalent to the fo-
using of a compound lens. A simple calculation using geo-
etrical optics can determine the location of the focusing

pot of the third beam. This location depends on the sepa-
ation of the two FZPs. The Hankel BPM simulation is ex-
ected to calculate all the diffractions including the light
pot due to multiple diffractions. Therefore, simulations
f single layer and two-layer central-ring VFZPs are per-
ormed in order to compare the intensity of the primary
ocus and the extra focusing spot. The simulation results
re shown in Fig. 6. While the intensity at the primary
ocus of the two-layer VFZP doubles, the higher order foci
ntensities are slightly decreased. This is because the
FZP is designed for a phase matching condition at the
rimary focus only. In addition, the simulation result

ig. 3. (a) Regular FZP, (b) central-ring FZP, and light diffractio
iffractions at the focal plane.
learly identified the spot due to double diffraction at the
ocation as calculated by the compound lens focusing

ethod. We conclude that diffraction by the VFZP con-
ists of primary diffractions, and multiple diffractions and
he Hankel BPM simulated all the diffracted light cor-
ectly.

The spots created by multiple diffractions usually have
ow efficiency. For example, if each FZP has 10% effi-
iency, the efficiency becomes 1% by double focusing.
hus, for a VFZP consisting of a larger number of FZP

ayers, focusing due to multiple diffractions is negligible.

. VOLUME FRESNEL ZONE PLATE
IMULATIONS
major purpose of VFZP simulation is to study how the

fficiency increase is associated with the number of FZP
ayers and the amount of phase modulation applied at
ach FZP layer. Diffraction efficiency can be calculated by
ividing the focal energy by the total input energy. Nor-
ally, the size of the focus is defined as �0=0.61� /NA,
here NA is the numerical aperture of the VFZP. There-

ore, the diffraction efficiency is given by

puted by the RS integral (c) the axial diffractions, (d) the radial
n com



f
w
f
0
m
t
s
m
p

F
o

F
(

F
r
k

192 J. Opt. Soc. Am. A/Vol. 26, No. 1 /January 2009 Srisungsitthisunti et al.
	 =
I�0

Iinput
=

�
0

�0

Idr

�
0

aperture

Idr

. �4�

The regular VFZP and the central-ring VFZP designed
or 20 mm focal length, consisting of up to 20 FZP layers,
ere simulated. These VFZPs are assumed to have uni-

orm phase modulation at each FZP layer from 0.05� to
.4�. Figures 7 and 8 show the relationship of the phase
odulation and the number of FZP layers on the diffrac-

ion efficiencies of the regular and central-ring VFZP, re-
pectively. Clearly, the number of layers that produces
aximum diffraction efficiency of a VFZP depends on the

hase modulation of each individual FZP. The lower the

ig. 4. (Color online) Diffraction results calculated by Hankel B
f the contour plots was reduced by plotting I�1/4� to clearly show

ig. 5. Light diffraction by VFZP consists of single diffractions
1,2) and multiple diffractions (3).
PM for (a) the regular FZP and (b) the central-ring FZP. The gradient
the propagating pattern.
ig. 6. Comparison of (a) the regular FZP and (b) the two-layer
egular VFZP to show the effect of double diffraction by the Han-
el BPM. The phase modulation is 0.5� for each FZP layer.
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hase modulation, the higher the number of layers re-
uired to reach the maximum efficiency. For example, in
he regular VFZP case, the small phase shift of 0.05� re-
uires more than 20 layers, while the phase shift of 0.4�
equires only 4–5 layers to reach maximum diffraction ef-
ciency. In general, the regular VFZP requires less num-
er of FZP layers to achieve maximum possible efficiency,
ince each regular FZP has higher efficiency than the cor-
esponding central-ring FZP. Once the efficiency reaches
he maximum, more layers of FZP causes efficiency to
rop. Small phase modulation tends to achieve higher
verall diffraction efficiency. Therefore, the VFZP is an ef-
ective method in terms of improving efficiency when the
ndividual FZP is limited to small efficiency. A major con-
lusion is that it is possible to achieve high diffraction ef-
ciency with the central-ring VFZP close to that of the
egular VFZP, and much higher than single regular FZP.
his central-ring VFZP method is competitive with mul-
ilevel phase FZP, yet has the advantage of easy imple-
entation, for example, within glass volume media. Al-

hough the regular VFZP can reach a little higher
fficiency, the fabrication time is much higher than the
entral-ring VFZP, and is much more sensitive to fabrica-
ion errors. It is worth mentioning that the full width at

ig. 7. (Color online) Simulation of regular VFZPs having up to
0 layers with phase modulations from 0.05� to 0.4�.

ig. 8. (Color online) Simulation of central-ring VFZPs having
p to 20 layers with phase modulations from 0.05� to 0.4�.
alf-maximum (FWHM) of the central-ring VFZP is com-
arable to the FWHM of the regular VFZP. This indicates
hat the focal spot size is a function of the NA, and the
entral-ring VFZP can be used for high resolution focus-
ng.

The central-ring VFZP simulations also yield the fol-
owing results, which are helpful for the design of the
FZP:

• The amount of phase modulation is directly related
o individual FZP efficiency. The smaller the FZP effi-
iency, the higher the VFZP efficiency can reach. How-
ver, it is not practical to use more than 20 layers to get
lightly higher efficiency.

• Increasing the number of zones improves the indi-
idual FZP efficiency since a larger amount of light is dif-
racted, and it requires fewer FZP layers to achieve maxi-
um VFZP efficiency. The effect of the number of zones is

imilar to the effect of phase modulation.
• The focal length has an interesting effect. In Fig. 9,

entral-ring VFZPs with different focal lengths were
imulated at a constant phase modulation of 0.23�. The
esults suggest that the efficiency for the single layer FZP
s higher for the shorter focal length, but the overall
FZP efficiency is highest for the 10 mm focal length.
his can be explained since the zone width is constant
nd optimized for the design of the shorter focal length in
he experiments. A longer focal length would require
ider center rings. However, the optimized zone width for
ZP is different for VFZP, and the 10 mm focal length
FZP appears to be more efficient.
• The zone width of the central-ring FZP should be

bout the size of the average regular zone. A too wide or
oo narrow zone induces more phase error and reduces
he individual efficiency.

• The separation distance between FZPs has negli-
ible effect on the results. The exception is the case of the
eparation distance approaching zero; the efficiency only
mproves for the first few FZP layers and is limited to a
mall overall efficiency.

Next, the simulation results are compared with the ex-
erimental results. The central-ring VFZPs were fabri-

ig. 9. (Color online) Simulation of central-ring VFZPs having
p to 20 layers with different focal lengths and constant phase
odulation of 0.23�.
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ated with a different number of layers up to 10 layers in
used silica by femtosecond laser direct writing. The de-
ails of the experiments are explained in [2]. The actual
hase modulation induced by each FZP is the amount of
efractive index change multiplied by the thickness of the
ZP layer, which depends on the laser power, scanning
peed, focusing lens, and depth of fabrication. Our fabri-
ated FZP was 250 
m thick and had a refractive index
hange of 0.2�10−3. The refractive index was estimated
y the grating fabrication method [2]. As a result,
he actual phase shift was approximately �
2� · �thick� · ��n� / �� /n�=0.23�. Therefore, the central-
ing VFZP simulation having a phase shift of 0.23� as
easured in the experiments was used in the simulation.
igure 10 compares simulation results for the central-
ing VFZP having a phase modulation of 0.23� with the
xperimental results under the same conditions. The
hase modulation of 0.23� has maximum efficiency at
ine layers, whereas the experimental result showed
aximum efficiency at eight layers. Normally, we would

xpect the measured efficiencies to be lower than the
imulated efficiencies due to fabrication errors, etc. How-
ver, the calculated results from the Hankel BPM appear
o be lower than the experimental results. This is possibly
ue to the measurement setup in which the intensity of
he spot was measured through a pinhole that was larger
han the FWHM of the focal spot. As a result, the mea-
ured efficiency is overestimated by about 5%–10%. Nev-
rtheless, the Hankel BPM accurately predicts the behav-
or of the efficiency increase by VFZPs and can be used for
he simulation of other 3D circularly symmetric diffrac-
ive optical devices.

. CONCLUSIONS
n this paper, we present an accurate and efficient nu-
erical method for simulation of focusing by VFZPs. The

ig. 10. Comparison of the experimental results and the simu-
ation results for the central-ring VFZP having 0.23� phase

odulation.
ankel BPM simulation results were confirmed by the
ayleigh–Summerfield integral method for the amplitude
ZPs. The Hankel BPM provides useful comparison of dif-

raction by regular and central ring VFZPs. The central-
ing VFZP has advantages in fast fabrication and robust-
ess against fabrication errors, and can achieve nearly as
igh a diffraction efficiency as the regular VFZP. The nu-
erical method allows for the investigation of VFZP pa-

ameters including phase modulation, number of FZP lay-
rs, focal length, number of rings, etc. Furthermore, the
fficiency simulation results with the VFZP matches the
xperimental results reasonably well. The results suggest
hat the phase modulation by each individual FZP deter-
ines the number of FZP layers required to achieve maxi-
um efficiency. The maximum diffraction efficiency is

ensitive to several parameters used in the design of the
FZP. As a result, the numerical simulation approach
as successfully developed to predict the diffraction out-
ut of the VFZP as a function of these parameters. Our
uture work will be using the Hankel BPM to design and
abricate a more efficient VFZP.
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