Molecular Dynamics Study of Phase Change Mechanisms During Femtosecond Laser Ablation

In this work, Molecular Dynamics (MD) simulation is employed to investigate femtosecond laser ablation of copper, with an emphasis on the understanding of the mechanism of phase change during laser ablation. Laser induced heat transfer, melting, surface evaporation, and material ablation are studied. Theoretically, it has been suggested that under intense femtosecond laser irradiation, the material undergoes a volumetric phase change process; its maximum temperature can be close to or even above the thermodynamic critical point. The MD simulations allow us to determine the transient temperature history of the irradiated material and to reveal the exact phase change process, which explains the mechanisms of femtosecond laser ablation. A finite difference calculation is also performed, which is used to compare results of heating and melting prior to a significant amount of material being ablated. [DOI: 10.1115/1.1797011]

Theoretical Description of the Mechanisms of Femtosecond Laser Ablation

There are two processes of laser induced material removal: surface evaporation and volumetric liquid-vapor phase transformation [11]. Surface evaporation occurs at any melted surface. During pulse laser heating, however, surface evaporation normally accounts for a small fraction of the total material that is removed, since the high temperature state only lasts for a short period of time. Under high power, short pulse laser irradiation, another material removal mechanism, the volumetric phase transformation termed phase explosion becomes important [12,13]. Phase explosion can be illustrated using the p-v diagram as shown in Fig. 1(a). With rapid heating by a laser pulse, it is possible to raise the temperature above the boiling point “A”. This is because the number of nucleation sites generated within the short heating duration is small. On the other hand, there is a boundary of thermodynamic phase stability, the spinode, which is marked as point “B” in Fig. 1(a). The spinodal temperature can be calculated from the derivatives of the Gibbs’ thermodynamic potential using appropriate equation of state near the critical point. At the spinode, homogeneous (volumetric) nucleation, or phase explosion occurs. The liquid is turned into a mixture of liquid and vapor through an explosion (expansion) process as shown in Fig. 1(a) from state B to state C. Therefore, phase explosion is accompanied with melt
explosion. Experimental work has shown that phase explosion occurs during nanosecond laser ablation of a metal [11,13].

The physical phenomena occurring in femtosecond laser ablation are much more complicated than those in nanosecond laser ablation. Due to the extremely short heating duration, the time required to transfer energy from the electron system to the lattice is longer than the laser pulse, leading to non-equilibrium between electrons and the lattice. Intense femtosecond laser pulses can cause electron emission. Because the mobility of electrons in dielectrics and semiconductors is low, a localized high ion density results which can exceed the lattice stability limit and cause Coulomb explosion—a type of nonthermal ablation [14,15]. Nonthermal Coulomb explosion is much more significant in dielectrics and semiconductors, while it plays a minor role in metal.

Femtosecond laser also causes an explosive type of material removal. An important factor that needs to be considered here is the time for vapor embryos to grow to nuclei prior to the volumetric phase change taking place. (Embryos smaller than a critical size will collapse, while those larger than the critical radius, called nuclei, will favor growing in order to reduce free energy.) The time for nucleation, or the time lag for phase explosion, has been estimated from the classical nucleation theory to be within 1 and 10 ns [16]. Experimental study showed that this time lag is about 5 ns during nanosecond laser ablation of a nickel target [17]. Since this time lag is longer than 1 ns, nucleation cannot occur during laser heating if the laser pulse is shorter than 1 ns. With the use of a femtosecond laser, heating above the spinodal temperature or even above the critical temperature becomes possible. A phase change process from the super-critical state to a two phase mixture is termed critical point phase separation [18]. The p-v diagram of critical point phase separation is shown in Fig. 1(b). Under an extreme heating rate, a material reaches a state above the thermodynamic critical temperature “B”, followed by an expansion (relaxation) process during which the nucleation embryos continue to grow. When a sufficient number of nucleation sites are generated in this expansion process, a violent phase change process takes place (state “C” to “D”). The exact point when this phase change occurs (i.e., above or below the critical point) is not known, but is probably dependent on the peak temperature obtained during the process. In the past, such a phenomenon was only discussed in a theoretical context due to lack of means to achieve the required heating rate [18]. However, with femtosecond laser heating, it was suggested that the critical point phase separation could be responsible for ablation [19].

We have conducted many experimental and numerical researches on the phase change process during nanosecond laser ablation [11,13,17]. This work continues our efforts on the investigations of pulsed laser ablation, with the emphasis on the ablation induced by a femtosecond pulse. From the above discussion, information such as the transient temperature during the laser ablation process, the creation of the vapor phase inside the superheated liquid, and the time required to form a two-phase mixture are needed to describe the phase change phenomena induced by a femtosecond laser pulse. The MD calculations conducted in this work are intended to provide detailed descriptions of femtosecond laser ablation.

Numerical Approach

Molecular Dynamics simulation is a computational method to investigate the behavior of materials by computing the molecular or atomic motion governed by a given potential. For copper, a suitable potential is the Morse potential expressed as [7]

$$\Phi(r) = D\left[e^{-2b(r-r_s)} - 2e^{-b(r-r_s)}\right]$$

where D is the total dissociation energy and r_s is the equilibrium distance. The constant b in this equation determines the shape of the potential curve. When $r=r_s$, the potential $\Phi\rightarrow-D$. At very large separation distance r, $\Phi\rightarrow0$. Using the potential function, the force between two atoms is obtained as

$$F(r) = -\frac{\partial\Phi(r)}{\partial r} = 2Db\left[e^{-2b(r-r_s)} - e^{-b(r-r_s)}\right]$$

The Morse potential has been proven to be a good approximation to the interactions between atoms in fcc metals, and is capable of predicting many material properties [7]. It has been widely used in simulating laser ablation processes [6,20–23]. Although there are other potentials for copper used in literatures, such as the embedded atom method [24], we have chosen the Morse potential since it requires the least amount of computational time and also there is no evidence which potential provides better description for the laser ablation problem. MD simulations of picosecond laser ablation of metal using EAM yielded similar volumetric phase change phenomena as the one obtained in this work [25], although direct comparison is not possible because of the different laser parameters used in the two works (different pulselength, fluence, etc.).

The general approach of MD is to obtain atomic positions, velocities, etc. at time $t+\Delta t$ based on positions, velocities, and other dynamic information at time t. The equations are solved on a step-by-step basis. Many different algorithms have been developed to solve Eqs. (1) and (2), of which the Verlet algorithm is widely used due to its numerical stability, convenience, and simplicity [26]. In this work, a modified Verlet algorithm is used [9].

In the calculation, most time is spent on calculating forces. However, it is not necessary to calculate forces between all atoms in a computational domain. When two atoms are far enough from each other, the force between them becomes very small (see Eq.
The distance beyond which the interaction force is negligible is called the cutoff distance (potential cutoff). In this work, \(r_c \) is taken as \(2.4r_e \). At this distance \(r_c \), the potential is about 0.9% of the equilibrium potential \(D \).

Using the two-temperature model, the laser energy is considered absorbed by electrons in copper first, and is then transferred from electrons to the lattice. The governing equation for electrons and the electron-lattice coupling can be obtained from two-temperature model and is expressed as [27]

\[
C_e \frac{\partial T_e}{\partial t} = \frac{1}{dx^2} \left(k_s \frac{\partial T_e}{\partial x} \right) - G(T_e - T_l) + S
\]

(3)

The strength of energy coupling between electrons and the lattice is represented by \(G \). The last term \(S \) represents absorption of energy by electrons from the laser. The laser source term \(S \) is expressed as the standard form for a laser pulse with a Gaussian temporal distribution:

\[
S = 0.94 \frac{1 - R}{t_p \delta} J \cdot \exp \left(-\frac{x}{\delta} - 2.77 \left(\frac{t - t_0}{t_p} \right)^2 \right)
\]

(4)

The use of Eq. (3) for computing energy absorption and diffusion in the electron system is justified. This is because the time for electrons to absorb photon energy and reach thermal equilibrium (electron thermalization time) is short, on the order of 500 fs [28]. This time scale is less than the time for energy to transfer from electrons to the lattice (~ ps) and the time of the subsequent phase change process (~ 10 ps or longer), which is the main focus of this study. In other words, the detailed process of how the electrons reach equilibrium, which occurs much earlier than the lattice structural change, is not important for this work.

The TDMA (Tri-Diagonal Matrix Algorithm) method is used to solve Eq. (3). At each time step, the electron-lattice coupling term \(G(T_e - T_l) \) is added to the lattice by scaling the velocities of all atoms in a structural layer by a factor \(\sqrt{1 + G(T_e - T_l) \delta^2 T_e} \), where \(E_k \) is the total kinetic energy in the layer at the time \(t \). This is equivalent to increasing the lattice energy as

\[
C_l \frac{\partial T_l}{\partial t} = G(T_e - T_l)
\]

(5)

Heat conduction in the lattice is always considered in the MD simulation, although it is insignificant compared with the electron conduction in a metal. The change of density due to thermal expansion or phase change is considered by scaling the thermal conductivity and specific heat of electrons in each cell by the ratio of the local density to the original density. Therefore, when expansion happens, the effective thermal conductivity and specific heat decreases, which is consistent with the electron properties of metals [29]. The total energy of the two systems is monitored and compared to the input laser energy at each time step. The procedure of handling heating of the lattice in a MD calculation has been described elsewhere [9].

A significant effect in femtosecond laser heating of metals is the ballistic motion of electrons [30,31]. This effect effectively leads to a greater absorption depth and hence lower surface temperatures [3]. However, no experimental data is available on the ballistic effect in copper, although it is expected to have some effect in all s/p-band metals [31]. As the main emphasis in this work is on identifying the material removal mechanisms rather than comparison with experimental data, inclusion of the ballistic effect is not strictly necessary as it would simply lead to a modification of the optical penetration depth and hence increase the threshold fluences for phase change.

The computational domain consists of 30 fcc (face-centered cubic) unit cells in \(y \) and \(z \) directions, and 600 fcc unit cells in the \(x \)-direction, which is shown in Fig. 2. The total number of atoms is 2,160,000. The whole computational domain before laser heating is \(10.97 \text{ nm} \times 10.97 \text{ nm} \times 218.65 \text{ nm} \). This computational size is sufficient to track the propagation of the phase change interface in the direction normal to the laser irradiated surface (the \(x \)-direction), as well as to maintain a large number of atoms in the \(y \)-z cross-sectional area so that macroscopic properties such as temperature can be determined from statistical analysis [9]. Periodic boundary conditions are used in \(y \) and \(z \) directions, and free boundary conditions in the \(x \)-direction.

The large number of atoms in the simulation necessitates the use of parallel computing platforms to accelerate computation. At the present time, a cluster of eight PCs is used, each with a 2.0 GHz AMD Athlon processor. The work across the processors is partitioned by dividing the whole domain into eight sub-domains so that the number of atoms for each processor is almost the same. Each processor computes forces and updates positions of all particles in the sub-domain. MPICH, a Message Passing Interface is used, which performs inter-processor communication for atoms close to inter-processor domain boundaries for both computing forces and reassigning atoms based on updated positions. Figure 3 shows the schematic of the domain division and calculation process.

In addition to the MD calculations, finite difference calculations are also carried out. As will be shown later, the FD calculation does not provide correct results about the material removal since it
does not account for the volumetric phase change described previously. The purpose here is to compare with the MD results before the volumetric phase change occurs. The FD calculation is based on the non-equilibrium hyperbolic two-step model [2]. For the present simulation, the model is simplified to consider only one-dimensional heat conduction and the hyperbolic part is neglected to yield a simpler parabolic set of equations. These assumptions are justified as the laser spot size is large compared to

Fig. 4 Comparison of electron (left column) and lattice temperatures (right column) obtained from MD and FD calculations
The heat penetration depth and the laser pulse width (100 fs) is long compared to the electron relaxation time [2]. The coupled equations of the model are:

\[C_e \frac{\partial T_e}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_e \frac{\partial T_e}{\partial x} \right) - G(T_e - T_l) + S \] (6a)

\[C_l \frac{\partial T_l}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_l \frac{\partial T_l}{\partial x} \right) + G(T_e - T_l) \] (6b)

It is seen that absorption of laser energy by electrons is modeled in the same way as in the MD calculation, while heat transfer in the lattice is modeled using the heat diffusion equation (Eq. 6(b)). The laser source term \(S \) is identical to what is shown in Eq. 4. The initial electron and lattice temperatures are taken to be equal to the room temperature and the top and bottom surfaces of the target are assumed to be insulated.

At high fluences and short pulse widths considered in this study, rapid solid-liquid phase changes are controlled by nucleation dynamics rather than by heat transfer at the phase change interface [32]. At the solid-liquid interface, the relation between the superheating/undercooling at the interface, \(\Delta T = T_{sl} - T_m \), and the interface velocity \(V_{sl} \) is given by

\[V_{sl}(T_{sl}) = V_0 \left[1 - \exp \left(- \frac{L_{liq} \Delta T}{k_{sl}T_{sl}T_m} \right) \right] \] (7)

where \(T_{sl} \) is the temperature of the solid-liquid interface, \(T_m \) the equilibrium melting temperature, and \(L_{liq} \) the enthalpy of fusion per atom. \(V_0 \) is a velocity factor. The energy balance equation at the solid-liquid interface is

\[\kappa_s \frac{\partial T_s}{\partial x} - \kappa_{liq} \frac{\partial T_{liq}}{\partial x} = \rho_s V_{sl} L_{liq} \] (8)

Procedures of solving Eqs. (5)-(7) have been described elsewhere [3].

In general, material removal by evaporation during femtosecond laser heating can be modeled using the Clausius-Clapeyron equation to provide for superheating at the liquid-vapor interface, the energy loss due to evaporation, and the amount of material evaporated [3,32]. However, it was noticed that evaporation contributes very little to the actual material removal process. It was seen that for femtosecond heating of gold, evaporation would contribute only about 0.1 nm of materials removal [3]. The energy lost due to evaporation is also negligible compared with the energy absorbed by the system. As such, in this calculation, the evaporation process was neglected and the material was allowed to stay liquid past the equilibrium evaporation temperature.

For both calculations, the laser beam is considered uniform in space, with a temporal Gaussian distribution (Eq. (4)) of 100 fs FWHM centered at 1 ps. Other parameters used in the calculations are: \(C_e = 2.1 \times 10^4 \text{ J/m}^3\cdot\text{K} \), \(\kappa_e = 386 \text{ W/m} \cdot \text{K} \), \(G = 4.8 \times 10^{16} \text{ W/m}^3\cdot\text{K} \), \(C_l = 383.817 \text{ J/kg} \cdot \text{K} \), \(\kappa_l = 0.01 \times \kappa_e \), \(L_{liq} = 2.07 \times 10^5 \text{ J/kg} \), \(T_m = 1358.0 \text{ K} \), \(\rho_s = 5.96 \times 10^3 \text{ kg/m}^3 \), \(D = 0.3429 \text{ eV} \), \(b = 13.588 \text{ nm}^{-1} \), and \(r_e = 0.2866 \text{ nm} \). The laser fluence (absorbed) is 0.4 J/cm². Properties used here are considered temperature-independent, since temperature dependent properties near the critical point are not available. However, the uncertainties in the properties will not affect this study since the focus is on the mechanisms of laser ablation, rather than obtaining the absolute thermodynamic parameters at the laser fluence used in the calculation.

Results and Discussion

Figure 4 shows electron and lattice temperature distributions in the target computed using the MD and FD methods. The surface is at the right edge, and laser pulse is incident on the surface from right to left. In the MD simulation, the temperature of the lattice at different locations is calculated as an ensemble average of a domain with a thickness of 2.4r_e in the x direction.

From Fig. 4, it is seen that the electron temperature on the surface increases from room temperature to a very high value (on the order of 10^3 K) within half a picosecond. However, at that time, the lattice temperature only increases tens of degrees. As electrons transfer energy to the lattice, the thermal expansion causes the length of the domain to increase. Note this lattice expansion is computed in the MD simulation only. It is observed from the figures that the results from the two calculations are comparable until about 9 ps. After that time, the results diverge as the FD calculation does not account for thermal expansion and the actual material removal caused by material breakup as observed in the MD calculation. For example, at 18 ps, the length of the MD calculation domain becomes more than 20 nm longer than the length of the FD calculation domain, which does not change with time. Further, at about 30 ps, the material starts break up (as will be seen in Figs. 6 and 7), which leads to a much longer total domain length. This type of volumetric phase change is not accounted for in the FD calculation. The temperature distributions from the MD and FD calculations diverge further after this volumetric phase change occurs.

A plot of the melt front position as a function of time shown in Fig. 5 also indicates that the two calculations yield similar results before liquid-vapor phase change begins. Before 20 ps, the melt depth calculated from MD is slightly larger than that from MD, which is caused by the thermal expansion as seen from the MD results in Fig. 4 and Fig. 6. After about 30 ps, the melt front positions calculated from the two methods start to differ significantly. This is because that the volumetric phase change is not considered in the FD calculation. In Fig. 5, the melt depth from the MD calculation is evaluated as the distance between the solid/liquid interface and the liquid surface, which includes gas bubbles formed inside the liquid (see Figs. 6 and 7) and therefore results in a much longer melt depth. The comparisons of the surface temperature and the melt depth indicate that the two methods provide similar results for heating and solid-liquid phase change prior to the beginning of the volumetric phase change.

The atomic number density at different times computed from the MD simulation is shown in Fig. 6. For solid, the value of number density at the location of a lattice layer is much higher than the average value, and the value at the location between lattice layers is almost zero. For liquid, the atomic number density is uniform due to the lack of periodic structures. For the gas state, the number density is very low compared with the liquid. Therefore, the atomic density shows clearly the state of matter at different locations in the computational domain. Figure 6 indicates that the lattice structure is intact within the first 1 ps or so, which...
is reflected by the oscillation of the atomic number density over the entire calculation domain. Melting has occurred at 2.4 ps but most of the target still has the lattice structure. On the surface, the number density drops from a uniform value to almost zero, showing evaporation occurs at the surface. At 9 ps, the melt propagates further into the target, and more atoms are evaporated. Fluctuation of the number density is seen near the surface at 36 ps, indicating bubbles are forming inside the liquid. This will be shown more clearly in Fig. 7. At later times of 72 ps and 108 ps, more bubbles are generated and the sizes of the bubbles grow larger.

Figure 7 presents several snapshots of two-dimensional (z-x) projections of atomic positions. Because of the large number of atoms, the lattice structure, if it exists, cannot be seen clearly in Fig. 7. Rather, this figure provides another way to show the phase change process inside the melted layer. Bubbles are seen at 36 ps. As time progresses, more bubbles grow from inside the domain.
At 108 ps, the liquid layer is broken into a number of pieces and has essentially ablated. It is found that the velocity of the ablated part near the surface is about 1960 m/s, while the inside part (at the location of 200 nm) is about 900 m/s.

Smaller bubbles may not be seen easily in Fig. 7. In order to observe the exact time when the bubble growth begins, atomic positions are re-plotted over 1/10th of the thickness in the y-direction (about 1 nm) at every time step. Bubbles can be seen as early as 18 ps, which is shown in Fig. 8. These bubbles are not observed in the 18 ps plot in Fig. 7 since they are obstructed by the atoms in front of and behind them along the y-direction.

A comparison between Fig. 4 and Fig. 6 provides more information on the relation between phase change and temperature distribution. In Fig. 4, the MD calculations show that there are two lattice temperature plateaus at 9 ps. One is at about 140 nm from the surface (86 nm measured from the bottom, or left). Figure 6 shows that at that time step, the solid-liquid interface is located at 86 nm. The other is at 185 nm, which is the evaporating surface as shown in Fig. 6. It is also seen that the lattice temperatures at these two locations are about 3200 K and 8200 K, respectively. For comparison, the equilibrium melting and boiling points of copper are 1358 K and 2835 K [33]. (The melting temperature of copper computed from the Morse potential is 2090 K [34].) Therefore, strong superheating at these interfaces is observed from the MD calculation.

To better illustrate the temperature history and to explain the ablation process, the transient lattice temperature is plotted in Fig. 9. It is seen that within a few picosecond, the surface temperature increases rapidly to its peak value of about 1.5 \times 10^5 \text{ K}. This temperature is above the critical temperature of copper, 7625 K [35]. After that, the temperature decreases due to the expansion of the high temperature material as shown in Figs. 6 and 7. The volumetric phase change does not occur until the expansion process continues for more than 10 ps. Since the volumetric phase change process occurs above the critical point, the critical point phase separation process described previously could have occurred. However, this may not be conclusive since the critical temperature used for comparison is not obtained from the MD calculation. Computations of the critical temperature are currently underway.

Comparing calculation results with experimental data is generally difficult because of the different criteria used in experiments to judge ablation. This is mainly due to the difficulty in distinguishing material removal from surface modification caused by melting and fluid flow. We conducted calculations of 248 nm, 0.5 ps KrF excimer laser ablation of copper, and found that the threshold for volumetric phase change is about 410 mJ/cm² (total fluence), while the threshold for melting is about 160 mJ/cm². The ablation threshold reported in literature [36] is 170 mJ/cm². It is difficult to assess whether the reported threshold value was actually the melting or surface damage threshold, or there was a discrepancy between calculation and experiments. Various factors can contribute to the discrepancy between calculations and experiments, including inaccurate potentials and properties used in the calculation, and oxidation of the surface in a normal experimental condition which leads to a much different absorptivity compared with that used in the calculation.

Conclusions

In summary, femtosecond laser material interaction is studied using numerical simulations. It is found that before the strong, volumetric material removal process takes place, heat transfer and the solid liquid phase change predicted using the FD approach agrees with the result of the MD simulation. At the solid-liquid and liquid-vapor interfaces, strong superheating is observed. The MD simulation predicts a volumetric type of phase change under the evaporating surface, which accounts for material removal during laser machining that is not computed by the FD method.

Acknowledgments

Support to this work by the National Science Foundation and the Office of Naval Research are gratefully acknowledged. The authors also thank Prof. A. Y. Grama of the Department of Computer Science, Purdue University for his help on parallel MD.

Nomenclature

\begin{align*}
 b &= \text{constant in Morse potential} \\
 C_e &= \text{specific heat of electron} \\
 C_l &= \text{specific heat of lattice} \\
 D &= \text{total dissociation energy in Morse potential} \\
 F &= \text{force between two atoms} \\
 G &= \text{electron-lattice coupling factor} \\
 J &= \text{laser fluence} \\
 k_b &= \text{Boltzmann constant} \\
 k_e &= \text{thermal conductivity of electron} \\
 k_l &= \text{thermal conductivity of lattice} \\
 k_{\text{liq}} &= \text{thermal conductivity of liquid} \\
 k_s &= \text{thermal conductivity of solid} \\
 L_{\text{sf}} &= \text{enthalpy of fusion per atom} \\
 r &= \text{distance between two atoms} \\
 R &= \text{reflectivity} \\
 r_c &= \text{cutoff distance} \\
 r_e &= \text{the equilibrium distance between two atoms}
\end{align*}
S = source term of laser heating
t = time
t₀ = center time of the laser pulse
Tₑ = electron temperature
Tᵢ = lattice temperature
Tₘ = equilibrium melting temperature
fₚ = pulse laser width
Tₛlᵣ = temperature of solid-liquid interface
V₀ = factor to calculate solid-liquid interface velocity
Vₛlᵣ = velocity of solid-liquid interface
x = coordinate in the direction of laser irradiation
Φ = potential between two atoms
δ = absorption depth
ρₛ = density of solid

References