Convolutional Neural
Networks

JUMP & -BRIC

Convolutional Neural Networks

» Convolutional Neural Networks (CNNs) are a class of
deep, feed-forward artificial neural networks

» Used for image/video classification by feature
extraction

» Inspired by biological processes in that the
connectivity pattern between neurons resembles the
organization of the animal visual cortex.

» CNNs use relatively little pre-processing compared to
other image classification algorithms

» State of the art powerful deep neural networks are
CNNs Ex: ResNet, VGG, AlexNet

&-BRIC

Structure

» CNNs consist of set of convolutional layers followed by
subsampling layers. A set of fully connected layers at the end

» Convolutional layers extract the features of the input images

» The final fully connected layers classify the input images
depending upon the extracted features

F. Maps

Ilr_rr
r

Convolutlon

Input Image

Feature Maps

RS

Convolution

Sub sampling

Convolution

Convolution (I * K)

H
= em

Kernel, K

&-BRIC

Convolution

I+ K) =

Toy example (3 X 3 kernel)

1.0+10+11
+0.1+0.0+0.0
+0.0+01+0.1
111 1|11 l l
0,00 1
: ° 0|01 2|1]1]2
o oo @ |1]0]0 — 1/ 0|(0|2| Featuremap
1,019/ 910 2 01111 1(0|0 |2
1/ 0/0/0|0]1 S o s
11111111111 Flipped Kernel

&-BRIC

Convolutional Layer Structure

Kernels
[j Output Feature maps

g J! !

Input Channels ! l

W

C12) G1,2) G(12) ——— C(L,2) = §(C(1,2)) *

f is the activation function. Typical
functions include Sigmoid, RelLU, tanh

&-BRIC

Convolutional Layer Structure

Kernels
Input Channels i Output Feature maps

o

ﬂ L

Image

lll)

C11) GL1) CGlLd) ey C(1,1) —> F(C(1,1)) ——

&-BRIC

Subsampling (pooling)

Reduce the size of the output feature maps. Two
typical pooling types
» Max pooling — Take the maximum out of a set of selected outputs

» Average pooling — Take the average of a set of selected outputs

Toy example (2 X scaling)

Max pooling

Average pooling

1
0
0
0

0

1

Rk R Rk |-

&-BRIC

Subsampling (pooling)

12 f. maps
(8x8) 12 f. maps
(28x28) 6 f. maps F. Maps (4x4)
Input Image 24x24 6 f. maps Output

Feature Maps 12x12

F. Maps
‘ | 4
I \
\ | | F . ‘ ‘

— & \
Convolution Sub sampling M :
6 kernels (2x2) Convolution Sub sampling
(5x5) 6x12 kernels (2x2)
(5x5)

Feature vector
Feature vectqe,, _

size = 4x4x12=192
20x20x12=4800

Convolution

D——

Subsampling reduced the size of the final
feature vector from 4800 to 192

@-BRIC

Subsampling (pooling)

Why subsampling?

» Reduce variance

» Reduces computational complexity (reduced dimensions)
» Extract features from neighborhood

Max pooling VS Average pooling
* Preserves more variance * Features may get smoothened
* Some information might be lost (less variance)

e Has contribution from all the
pixels in the feature maps

Note: The choice of subsampling method depends on the applications

&-BRIC

Fully connected layers (Classifier)

» Fully connected layers at the end of a typical CNN will classify
the inputs depending upon the features extracted by the

convolutional layers
Weights

0; ; — weight between i*" pre neuron
and jt post neuron

1 |2
2 |0
10 3/2
12 -
f‘ . I3 N
1 |5/4h
= Zj =2ai9i,j
3/2| 7/4 . 3/2 _
: () > =1
7/4
Convolutional
1
layer output ” <)
e Output layer
N 7/4

&-BRIC

Training

» The weights in the convolutional kernels must be changed
according to the input training data set

» Typical training method is the gradient descent based
backward propagation

» Learning rule

3] (0)]

0 =60+ A0, AO = —
[+ a EY:

J(8) is the error/cost function at the output and « is the learning rate. The
error function can be the Euclidean distance between the expected and the

actual output

L
[J =51k =yl]

y is the expected output, and h is the actual output (hypothesis)

&-BRIC

Training - Example

Consider a CNN with two final fully connected (FC) layers, one convolutional layer and an

average pooling layer. The activation function is a sigmoid (g(Z) = 1+2_z)

Paimn Y
(| }
[us n
o in)
us v
L y

C1
FC2

Input
Conv

Updating the weights of the final fully connected layers can be done as follows

= =(h; —y;)h;(1—h;)a; =a
aei[I;CZ] dOh; 07; aQ[I;CZ] (J J) J(]) i

L,

[FC1] o[FC2]
i 9

Here Hi[I;CZ]is the weight between the output of the pre layer (al[Fm]) and the output of

the final FC layer (hj = g(zj)). z; is the weighted summation that is fed to the output

neurons (z; = Y; al[Fm] Hi[I;CZ])
&-BRIC

Training - Example

Updating the weights of the second FC layer is slightly different since the error at the output must be
propagated backwards.

o I
5 2
= o
glFcz] 51[¢zl
(o Z 8] 9a" gz ‘
aa][1~"c1] - aal[FCZ] 571FC2 5 [FCT] |
PLG P _fﬁ’“e”m”
6] 6] a Z S[FCZ] Q[FCZ] FC1] (1 B [FCI]) [p] i™" output
69[F01] P 07! [FC1] 89 [FC1] a; a;
lEL
\ [p]é.[FCl]))

Here Bi[’lja]is the weight between the output of the pooling layer (al[p]) and the output of the FC1 layer
Fc1]
(@Y =

(].[FC])). The neuron output a}FCl]is connected to all the [€ L neurons in front. SZ[FCZ]is the
a]

P of the [* neuron in front.
VA

Training - Example

For all the hidden layers, the aforementioned % = Y1e1 6,6 rule applies. There is no weight
J

update to the pooling layer (since it is only a scaling operation). However, the associated § values
must be calculated to update the conv layer weights

FC2

Input
Conv

[p]
sPl — 0] aa Z 5 [FC1] FCl
j p
lEL
Here Hj[l Uis a weight between the output of the pooling layer (a (][p]) and the output of the FC1
layer (a{ g g ([FC1])). The neuron output a][p]is connected to all the [€ L neurons in front.
Here the a (1 ;) term is not used since the pooling layer output does not have a sigmoid

function assocuated with it.

-BRIC

Training - Example

In order to calculate the & values associated with the conv. Layer (5[0]), the pooling layer’s §
values (6[p]) can be used as follows.

ﬁ Average pooling Max pooling
\ /&pm \

§lelil | glplil | glpli2 | glpl12 0 0 0
4 4 4 4
§lpl1l §lplll Slpl12 Slpl12 5[p]11 5[P]12 0 0 0 5[p]12 5[p]11 5[p]12
§lpl21 | glpl21 | glpl22 | glpl22 - - 0 0 §lp122 0 8lel,, 8l
4 4 4 4 2 *
§lpl21 | glpl21 | glpl22 | glpl22 §lpl21 0 0 0
4 4 4 4
[p] lc] [l :fips
[p] slel = {Sm,nai' i \1—a;;) ifitis the maxval

o) P
\ Si[,j'] = ﬁ aE’Cj] (1 — ag:j])/ \] 0 if it is not the max Vay

The (i,j) element in the conv layer output will be mapped to the (m,n) element in the pooling

Le]
LJj

is the output

&-BRIC

layer output. N is the scaling factor during pooling. In above example, N = 2. a
of the conv layer.

Training - Example

Once the 6 values are calculated, the weights between the input and the conv layer can be
calculated as follows.

FC2

CHD

Input
onv

ad/ ==22k%5p]
ol ~ &

Hi[j.]is the weight between the input layer output x; and convolution layer output a][c].
Unlike a weight in a fully connected layer, a weight in a convolutional layer is connected to
multiple inputs and outputs. Therefore, the summation over the entire space must be

| %-BRIC

Training - Example

a fully connected layer

/ Recall the weight update in Analogy for convolutional layers

J

Region over/which the Xx. § summationmust be taken

Wf
ANS

Training - Example

ﬁ Region over which the Xx. summation must be taken ﬁ

911 912 011 012 ,
01 | 02 0, | 02 :
(iR B
sl [sl e | | — A = —a(x®6)
A6 A6
o ol ol il

/ @-BRIC

Trained networks

» A trained network is capable to classifying certain inputs which were not
available during the training

» The convolutional kernels closer to the images will extract basic features
whereas, deeper kernels will extract more subtle features of inputs

/ r CO?Vl ‘ Conv5 \

Features activated by the 15t and 5% convolutional layer kernels in AlexNet

@-BRIC

Trained networks

» Convolutional neural networks also face overfitting problem.

» The generalization techniques explained previously are applicable here as well.

» Apart from those methods, stochastic pooling is another generalization technique
used to avoid overfitting specifically in CNNs

Stochastic Pooling

Assign a probability
to each element in

each activationin a
region

0.1 0.5 0 0.9
0.2 0 0.3 0
1 0 1 0.5
0.3 0.7 0 1

_

Convolutional layer output

v

mvolves stochastically activating certain outputs in the pooling layer

0.125

0.625

0

0.75

0.25

0.25

0.5

0.4

0.2

0.15

0.35

0.4

Select a value
depending upon
the assigned
probability

—

0.2 | 0.9

0.7 |1

&-BRIC

GPU Implementation: Fully Connected Layer
Matrix-Matrix Operation

« Batching (N) turns operation into a Matrix-Matrix multiply

Filters Input fmaps Output fmaps
«— CHW — < N > < N >
CHW
M X l = M

&-BRIC

Convolutional Layer Structure - Revisited

Kernels
[j Output Feature maps

Input Channels ! l N
A !

W

C12) G1,2) G(12) ——— C(L,2) = §(C(1,2)) *

f is the activation function. Typical
functions include Sigmoid, RelLU, tanh

&-BRIC

Conv Layer as Matrix-Matrix Operation - 1

Convert to matrix-matrix operation using Toeplitz Matrix

Kernel Input Fmap
Convolution
1| 2 1(2 |3
*
3| 4 4 | 5|6
7 | 8|9

Matrix-Vector
Multiplication

Input Data in Replicated
(Toeplitz matrix w/
redundant data)

Output Fmap

1

2

3

4

4 | 5
5|6
7 | 8
8|9

&-BRIC

Conv Layer as Matrix-Matrix Operation - 2

Convolution layer with multiple kernels and channels

Input Fmap Output Fmap
1| 2 1| 2 1(2 |3 1(2 (3 1| 2
Kernell K - Chnl 1
3|4 3|4 4 | 5| 6 4 | 5| 6 3| 4
1| 2 11| 2 7| 8|9 7| 8|9 1| 2
Kernel2 Chnl 1 chnl 2 Chnl 2
3|4 3|4 3|4

&-BRIC

Conv Layer as Matrix-Matrix Operation - 3

Multiple kernels and channels as Matrix-Matrix operation

1124)5
2 13 |5]|6
2 (3 |4|1|2)|3]| 4 112 |3)| 4
® (4 (5|7 |8 | =
2 (34|12)|3]| 4 1 (2|3 |4
5(6(8]9
1 (2|4 |5
23 |5]|6
4 | 517 | 8
51689

Input Data in Replicated
(Toeplitz matrix w/

redundant data) @ 'BRIC

