Convolutional Neural Networks

Convolutional Neural Networks

- Convolutional Neural Networks (CNNs) are a class of deep, feed-forward artificial neural networks
- Used for image/video classification by feature extraction
- Inspired by biological processes in that the connectivity pattern between neurons resembles the organization of the animal visual cortex.
- CNNs use relatively little pre-processing compared to other image classification algorithms
- State of the art powerful deep neural networks are CNNs Ex: ResNet, VGG, AlexNet

- CNNs consist of set of convolutional layers followed by subsampling layers. A set of fully connected layers at the end
- Convolutional layers extract the features of the input images
- The final fully connected layers classify the input images depending upon the extracted features

Convolution

Convolution (I * K)

Image, I

Kernel, K

Convolution

(I * K) =

Toy example (3×3 kernel)

1.0 + 1.0 + 1.1+0.1 + 0.0 + 0.0 +0.0 + 0.1 + 0.1

Feature map

Image

Convolutional Layer Structure

f is the activation function. Typical functions include Sigmoid, ReLU, tanh

Convolutional Layer Structure

Kernels

Reduce the size of the output feature maps. Two typical pooling types

- Max pooling Take the maximum out of a set of selected outputs
- Average pooling Take the average of a set of selected outputs

<u>Toy example (2 \times scaling)</u>

Image

E

Subsampling (pooling)

BRIC

Subsampling (pooling)

Why subsampling?

- Reduce variance
- Reduces computational complexity (reduced dimensions)
- Extract features from neighborhood

Max pooling

VS

- Preserves more variance
- Some information might be lost

Average pooling

- Features may get smoothened (less variance)
- Has contribution from all the pixels in the feature maps

Note: The choice of subsampling method depends on the applications

Fully connected layers (Classifier)

Fully connected layers at the end of a typical CNN will classify the inputs depending upon the features extracted by the convolutional layers

Training

- The weights in the convolutional kernels must be changed according to the input training data set
- Typical training method is the gradient descent based backward propagation
- Learning rule

$$\theta = \theta + \Delta \theta$$
, $\Delta \theta = -\alpha \frac{\partial J(\theta)}{\partial \theta}$

 $J(\theta)$ is the error/cost function at the output and α is the learning rate. The error function can be the Euclidean distance between the expected and the actual output

$$J = \frac{1}{2} ||h - y||^2$$

y is the expected output, and h is the actual output (hypothesis)

Consider a CNN with two final fully connected (FC) layers, one convolutional layer and an average pooling layer. The activation function is a sigmoid $\left(g(z) = \frac{1}{1+e^{-z}}\right)$

Updating the weights of the final fully connected layers can be done as follows

$$\begin{cases} \frac{\partial J}{\partial \theta_{i,j}^{[FC2]}} = \frac{\partial J}{\partial h_j} \frac{\partial h_j}{\partial z_j} \frac{\partial z_j}{\partial \theta_{i,j}^{[FC2]}} = (h_j - y_j) h_j (1 - h_j) a_i^{[FC1]} = a_i^{[FC1]} \delta_j^{[FC2]} \end{cases} \\ \text{Here } \theta_{i,j}^{[FC2]} \text{ is the weight between the output of the pre layer } (a_i^{[FC1]}) \text{ and the output of the final FC layer } (h_j = g(z_j)). z_j \text{ is the weighted summation that is fed to the output neurons } (z_j = \sum_i a_i^{[FC1]} \theta_{i,j}^{[FC2]}) \end{cases}$$

E -

Updating the weights of the second FC layer is slightly different since the error at the output must be propagated backwards.

For all the hidden layers, the aforementioned $\frac{\partial J}{\partial a_j} = \sum_{l \in L} \delta_l \theta_{jl}$ rule applies. There is no weight update to the pooling layer (since it is only a scaling operation). However, the associated δ values must be calculated to update the conv layer weights

In order to calculate the δ values associated with the conv. Layer $(\delta^{[c]})$, the pooling layer's δ values $(\delta^{[p]})$ can be used as follows.

The (i,j) element in the conv layer output will be mapped to the (m,n) element in the pooling layer output. N is the scaling factor during pooling. In above example, N = 2. $a_{i,j}^{[c]}$ is the output of the conv layer.

Once the δ values are calculated, the weights between the input and the conv layer can be calculated as follows.

 $\theta_{i,j}^{[c]}$ is the weight between the input layer output x_i and convolution layer output $a_j^{[c]}$. Unlike a weight in a fully connected layer, a weight in a convolutional layer is connected to multiple inputs and outputs. Therefore, the summation over the entire space must be taken.

Trained networks

- A trained network is capable to classifying certain inputs which were not available during the training
- The convolutional kernels closer to the images will extract basic features whereas, deeper kernels will extract more subtle features of inputs

Features activated by the 1st and 5th convolutional layer kernels in AlexNet

Trained networks

- Convolutional neural networks also face overfitting problem.
- > The generalization techniques explained previously are applicable here as well.
- Apart from those methods, stochastic pooling is another generalization technique used to avoid overfitting specifically in CNNs

Stochastic Pooling

GPU Implementation: Fully Connected Layer Matrix-Matrix Operation

Batching (N) turns operation into a Matrix-Matrix multiply

Convolutional Layer Structure - Revisited

f is the activation function. Typical functions include Sigmoid, ReLU, tanh

Conv Layer as Matrix-Matrix Operation - 1

Convert to matrix-matrix operation using Toeplitz Matrix

Conv Layer as Matrix-Matrix Operation - 2

Convolution layer with multiple kernels and channels

Conv Layer as Matrix-Matrix Operation - 3

Multiple kernels and channels as Matrix-Matrix operation

Input Data in Replicated (Toeplitz matrix w/ redundant data)

