Convolutional Neural
Networks
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Convolutional Neural Networks

» Convolutional Neural Networks (CNNs) are a class of
deep, feed-forward artificial neural networks

» Used for image/video classification by feature
extraction

» Inspired by biological processes in that the
connectivity pattern between neurons resembles the
organization of the animal visual cortex.

» CNNs use relatively little pre-processing compared to
other image classification algorithms

» State of the art powerful deep neural networks are
CNNs Ex: ResNet, VGG, AlexNet
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Structure

» CNNs consist of set of convolutional layers followed by
subsampling layers. A set of fully connected layers at the end

» Convolutional layers extract the features of the input images

» The final fully connected layers classify the input images
depending upon the extracted features
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Convolution
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Toy example (3 X 3 kernel)
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Convolutional Layer Structure
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f is the activation function. Typical
functions include Sigmoid, RelLU, tanh
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Convolutional Layer Structure
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Subsampling (pooling)

Reduce the size of the output feature maps. Two
typical pooling types
» Max pooling — Take the maximum out of a set of selected outputs

» Average pooling — Take the average of a set of selected outputs

Toy example (2 X scaling)
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Subsampling (pooling)

12 f. maps
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Subsampling (pooling)

Why subsampling?

» Reduce variance

» Reduces computational complexity (reduced dimensions)
» Extract features from neighborhood

Max pooling VS Average pooling
* Preserves more variance * Features may get smoothened
* Some information might be lost (less variance)

e Has contribution from all the
pixels in the feature maps

Note: The choice of subsampling method depends on the applications
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Fully connected layers (Classifier)

» Fully connected layers at the end of a typical CNN will classify
the inputs depending upon the features extracted by the

convolutional layers
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Training

» The weights in the convolutional kernels must be changed
according to the input training data set

» Typical training method is the gradient descent based
backward propagation

» Learning rule
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J(8) is the error/cost function at the output and « is the learning rate. The
error function can be the Euclidean distance between the expected and the

actual output

L
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y is the expected output, and h is the actual output (hypothesis)

&-BRIC




Training - Example

Consider a CNN with two final fully connected (FC) layers, one convolutional layer and an

average pooling layer. The activation function is a sigmoid (g(Z) = 1+2_z)
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Updating the weights of the final fully connected layers can be done as follows
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Here Hi[I;CZ]is the weight between the output of the pre layer (al[Fm]) and the output of

the final FC layer (hj = g(zj)). z; is the weighted summation that is fed to the output

neurons (z; = Y; al[Fm] Hi[I;CZ])
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Training - Example

Updating the weights of the second FC layer is slightly different since the error at the output must be
propagated backwards.
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Here Bi[’lja]is the weight between the output of the pooling layer (al[p]) and the output of the FC1 layer
Fc1]
(@Y =

( ].[FC ])). The neuron output a}FCl]is connected to all the [ € L neurons in front. SZ[FCZ]is the
a]

P of the [* neuron in front.
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Training - Example

For all the hidden layers, the aforementioned % = Y1e1 6,6 rule applies. There is no weight
J

update to the pooling layer (since it is only a scaling operation). However, the associated § values
must be calculated to update the conv layer weights
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Here Hj[l Uis a weight between the output of the pooling layer ( a ( ][p]) and the output of the FC1
layer (a{ g g ( [FC1])). The neuron output a][p]is connected to all the [ € L neurons in front.
Here the a (1 ; ) term is not used since the pooling layer output does not have a sigmoid

function assocuated with it.
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Training - Example

In order to calculate the & values associated with the conv. Layer (5[0]), the pooling layer’s §
values (6[p]) can be used as follows.
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The (i,j) element in the conv layer output will be mapped to the (m,n) element in the pooling
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is the output

&-BRIC

layer output. N is the scaling factor during pooling. In above example, N = 2. a
of the conv layer.



Training - Example

Once the 6 values are calculated, the weights between the input and the conv layer can be
calculated as follows.
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Hi[j.]is the weight between the input layer output x; and convolution layer output a][c].
Unlike a weight in a fully connected layer, a weight in a convolutional layer is connected to
multiple inputs and outputs. Therefore, the summation over the entire space must be
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Training - Example

a fully connected layer

/ Recall the weight update in Analogy for convolutional layers
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Training - Example

ﬁ Region over which the Xx.  summation must be taken ﬁ
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Trained networks

» A trained network is capable to classifying certain inputs which were not
available during the training

» The convolutional kernels closer to the images will extract basic features
whereas, deeper kernels will extract more subtle features of inputs
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Features activated by the 15t and 5% convolutional layer kernels in AlexNet
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Trained networks

» Convolutional neural networks also face overfitting problem.

» The generalization techniques explained previously are applicable here as well.

» Apart from those methods, stochastic pooling is another generalization technique
used to avoid overfitting specifically in CNNs

Stochastic Pooling
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GPU Implementation: Fully Connected Layer
Matrix-Matrix Operation

« Batching (N) turns operation into a Matrix-Matrix multiply

Filters Input fmaps Output fmaps
«— CHW — < N > < N >
CHW
M X l = M
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Convolutional Layer Structure - Revisited
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[ j Output Feature maps
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f is the activation function. Typical
functions include Sigmoid, RelLU, tanh
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Conv Layer as Matrix-Matrix Operation - 1

Convert to matrix-matrix operation using Toeplitz Matrix

Kernel Input Fmap
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Conv Layer as Matrix-Matrix Operation - 2

Convolution layer with multiple kernels and channels

Input Fmap Output Fmap
1| 2 1| 2 1(2 |3 1(2 (3 1| 2
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Conv Layer as Matrix-Matrix Operation - 3

Multiple kernels and channels as Matrix-Matrix operation
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