
Convolutional Neural
Networks

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of
deep, feed-forward artificial neural networks

Used for image/video classification by feature
extraction

Inspired by biological processes in that the
connectivity pattern between neurons resembles the
organization of the animal visual cortex.

CNNs use relatively little pre-processing compared to
other image classification algorithms

State of the art powerful deep neural networks are
CNNs Ex: ResNet, VGG, AlexNet

Structure

 CNNs consist of set of convolutional layers followed by
subsampling layers. A set of fully connected layers at the end

 Convolutional layers extract the features of the input images

 The final fully connected layers classify the input images
depending upon the extracted features

Input Image
Feature Maps

F. Maps

F. Maps

F. Maps
Output

Convolution Sub sampling
Convolution Sub sampling

Convolution

Convolution

Convolution

∗

𝐼 ∗ 𝐾

Image, I Kernel, K

Feature map

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

00 0 0

1 1 1 1

1

1

1

1

1 11 1 1 1

Convolution

𝐼 ∗ 𝐾 = ⨂

Toy example (3 × 3 kernel)

11

0

1

10

0 0

0
00

2

1

11

0 0

1
⨂ =

1.0 + 1.0 + 1.1
+1.1 + 0.0 + 0.0
+1.0 + 0.1 + 0.1

1.0 + 1.0 + 1.1
+0.1 + 0.0 + 0.0
+0.0 + 0.1 + 0.1

33

2

2

2

2 2

Image

Flipped Kernel

Convolutional Layer Structure

Cr(1,1) Cg(1,1) Cb(1,1) C(1,1)
Σ

C(1,2)

Image
Input Channels

Kernels

Output Feature maps

Cr(1,2) Cg(1,2) Cb(1,2) f(C(1,1))f(C(1,2))

𝒇 is the activation function. Typical
functions include Sigmoid, ReLU, tanh

Convolutional Layer Structure

Cr(1,1) Cg(1,1) Cb(1,1) C(1,1)
Σ

Input Channels

Kernels

Output Feature maps

Image

f(C(1,1))

Subsampling (pooling)

Reduce the size of the output feature maps. Two
typical pooling types
 Max pooling – Take the maximum out of a set of selected outputs

 Average pooling – Take the average of a set of selected outputs

Feature map

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

00 0 0

1 1 1 1

1

1

1

1

1 11 1 1 1

11

0

1

10

0 0

0

⨂ =
00

2

1

11

0 0

1

33

2

2

2

2 2

Toy example (2 × scaling)

Image

Flipped Kernel

2 2

33

1 5/4

3/2

Max pooling

Average pooling
7/4

Subsampling (pooling)

Input Image
Feature Maps

F. Maps

F. Maps

F. Maps
Output

Convolution Sub sampling
Convolution Sub sampling

Convolution

(28x28)

6 kernels
(5x5)

(2x2)

6 f. maps
24x24 6 f. maps

12x12

6x12 kernels
(5x5)

12 f. maps
(8x8)

12 f. maps
(4x4)

(2x2)

Feature vector
size =
4x4x12=192

Feature vector
size =
20x20x12=4800

Subsampling reduced the size of the final
feature vector from 4800 to 192

Subsampling (pooling)

Why subsampling?

 Reduce variance

 Reduces computational complexity (reduced dimensions)

 Extract features from neighborhood

Max pooling vs Average pooling

• Preserves more variance
• Some information might be lost

• Features may get smoothened
(less variance)

• Has contribution from all the
pixels in the feature maps

Note: The choice of subsampling method depends on the applications

Fully connected layers (Classifier)

 Fully connected layers at the end of a typical CNN will classify
the inputs depending upon the features extracted by the
convolutional layers

1 0

3/2 11 2

3/2 7/41 5/4

3/2 7/4

1

0

3/2

1

1

2

3/2

7/4

1

5/4

3/2

7/4

Convolutional
layer output

Output layer

𝑧𝑗 =

𝑖=1

𝑁

𝑎𝑖𝜃𝑖,𝑗

Weights
𝜃𝑖,𝑗 − weight between ith pre neuron

and jth post neuron

1
2

⋮
⋮
⋮

𝑁

Training

 The weights in the convolutional kernels must be changed
according to the input training data set

 Typical training method is the gradient descent based
backward propagation

 Learning rule

𝜃 = 𝜃 + ∆𝜃 , ∆𝜃 = −𝛼
𝜕𝐽(𝜃)

𝜕𝜃

𝐽(𝜃) is the error/cost function at the output and α is the learning rate. The
error function can be the Euclidean distance between the expected and the
actual output

𝐽 =
1

2
||ℎ − 𝑦||2

y is the expected output, and ℎ is the actual output (hypothesis)

Training - Example

Consider a CNN with two final fully connected (FC) layers, one convolutional layer and an

average pooling layer. The activation function is a sigmoid g 𝑧 =
1

1+𝑒−𝑧

Updating the weights of the final fully connected layers can be done as follows

𝜕𝐽

𝜕𝜃𝑖,𝑗
[𝐹𝐶2]
=
𝜕𝐽

𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝜃𝑖,𝑗
[𝐹𝐶2]
= ℎ𝑗 − 𝑦𝑗 ℎ𝑗 1 − ℎ𝑗 𝑎𝑖

[𝐹𝐶1]
= 𝑎𝑖
[𝐹𝐶1]
𝛿𝑗
[𝐹𝐶2]

Here 𝜃𝑖,𝑗
[𝐹𝐶2]

is the weight between the output of the pre layer (𝑎𝑖
[𝐹𝐶1]

) and the output of

the final FC layer ℎ𝑗 = 𝑔(𝑧𝑗) . 𝑧𝑗 is the weighted summation that is fed to the output

neurons (𝑧𝑗 = 𝑖 𝑎𝑖
[𝐹𝐶1]
𝜃𝑖,𝑗
[𝐹𝐶2]

)

In
p

u
t

C
o

n
v

P
o

o
lin

g

FC
1

FC
2

Training - Example

Updating the weights of the second FC layer is slightly different since the error at the output must be
propagated backwards.

𝜕𝐽

𝜕𝑎𝑗
[𝐹𝐶1]
=

𝑙∈𝐿

𝜕𝐽

𝜕𝑎𝑙
[𝐹𝐶2]

𝜕𝑎𝑙
[𝐹𝐶2]

𝜕𝑧𝑙
[𝐹𝐶2]

𝜕𝑧𝑙
[𝐹𝐶2]

𝜕𝑎𝑗
[𝐹𝐶1]

𝜕𝐽

𝜕𝜃𝑖,𝑗
[𝐹𝐶1]
=
𝜕𝐽

𝜕𝑎𝑗
[𝐹𝐶1]

𝜕𝑎𝑗
[𝐹𝐶1]

𝜕𝑧𝑗
[𝐹𝐶1]

𝜕𝑧𝑗
[𝐹𝐶1]

𝜕𝜃𝑖𝑗
[𝐹𝐶1]
=

𝑙∈𝐿

𝛿𝑙
𝐹𝐶2
𝜃𝑗𝑙
𝐹𝐶2
𝑎𝑗
𝐹𝐶1
1 − 𝑎𝑗

𝐹𝐶1
𝑎𝑖
𝑝

= 𝑎𝑖
[𝑝]
𝛿𝑗
[𝐹𝐶1]

Here 𝜃𝑖,𝑗
[𝐹𝐶1]

is the weight between the output of the pooling layer (𝑎𝑖
[𝑝]

) and the output of the FC1 layer

(𝑎𝑗
[𝐹𝐶1]
= 𝑔(𝑧𝑗

[𝐹𝐶1]
)). The neuron output 𝑎𝑗

[𝐹𝐶1]
is connected to all the 𝑙 ∈ 𝐿 neurons in front. 𝛿𝑙

[𝐹𝐶2]
is the

𝜕𝐽

𝜕𝑧𝑙
[𝐹𝐶2] of the 𝑙th neuron in front.

In
p

u
t

C
o

n
v

P
o

o
lin

g

FC
1

FC
2

𝜃𝑗𝑙
[𝐹𝐶2] 𝛿𝑙

[𝐹𝐶2]

𝜃𝑖,𝑗
[𝐹𝐶1]

ith output
jth neuron lth neuron

Training - Example

For all the hidden layers, the aforementioned
𝜕𝐽

𝜕𝑎𝑗
= 𝑙∈𝐿 𝛿𝑙𝜃𝑗𝑙 rule applies. There is no weight

update to the pooling layer (since it is only a scaling operation). However, the associated 𝛿 values
must be calculated to update the conv layer weights

𝛿𝑗
[𝑝]
=
𝜕𝐽

𝜕𝑎𝑗
[𝑝]

𝜕𝑎𝑗
[𝑝]

𝜕𝑧𝑗
[𝑝]
=

𝑙∈𝐿

𝛿𝑙
[𝐹𝐶1]
𝜃𝑗𝑙
[𝐹𝐶1]

Here 𝜃𝑗𝑙
[𝐹𝐶1]

is a weight between the output of the pooling layer 𝑎𝑗
[𝑝]

and the output of the FC1

layer 𝑎𝑙
[𝐹𝐶1]
= 𝑔 𝑧𝑙

𝐹𝐶1
. The neuron output 𝑎𝑗

[𝑝]
is connected to all the 𝑙 ∈ 𝐿 neurons in front.

Here the 𝑎𝑗
[𝑝]
(1 − 𝑎𝑗

[𝑝]
) term is not used since the pooling layer output does not have a sigmoid

function associated with it.

In
p

u
t

C
o

n
v

P
o

o
lin

g

FC
1

FC
2

Training - Example

In order to calculate the 𝛿 values associated with the conv. Layer 𝛿[𝑐] , the pooling layer’s 𝛿

values 𝛿[𝑝] can be used as follows.

δ[p]11

4

δ[p]11

4

δ[p]12

4

δ[p]12

4

δ[p]11

4

δ[p]11

4

δ[p]12

4

δ[p]12

4

δ[p]21

4

δ[p]21

4

δ[p]22

4

δ[p]22

4

δ[p]21

4

δ[p]21

4

δ[p]22

4

δ[p]22

4

δ[p]
11 δ[p]

12

δ[p]
21 δ[p]

22

δ[p]11

0 0 0

0 0 0 δ[p]12

0 0 δ[p]22 0

δ[p]21 0 0 0

δ[p]
11 δ[p]

12

δ[p]
21 δ[p]

22

𝛿𝑖,𝑗
[𝑐]
=
𝛿𝑚,𝑛
𝑝

𝑁 × 𝑁
𝑎𝑖,𝑗
𝑐
1 − 𝑎𝑖,𝑗

[𝑐] 𝛿𝑖,𝑗
[𝑐]
=
𝛿𝑚,𝑛
𝑝
𝑎𝑖,𝑗
𝑐
1 − 𝑎𝑖,𝑗

[𝑐]
if it is themax val

0 if it is not themax val

The (i,j) element in the conv layer output will be mapped to the (m,n) element in the pooling

layer output. 𝑁 is the scaling factor during pooling. In above example, 𝑁 = 2. 𝑎𝑖,𝑗
𝑐

is the output

of the conv layer.

Average pooling Max pooling

Training - Example

Once the 𝛿 values are calculated, the weights between the input and the conv layer can be
calculated as follows.

𝜕𝐽

𝜕𝜃𝑖,𝑗
[𝑐]
= 𝑥𝑖𝛿𝑗

[𝑐]

𝜃𝑖,𝑗
[𝑐]

is the weight between the input layer output 𝑥𝑖 and convolution layer output 𝑎𝑗
[𝑐]

.

Unlike a weight in a fully connected layer, a weight in a convolutional layer is connected to
multiple inputs and outputs. Therefore, the summation over the entire space must be
taken.

In
p

u
t

C
o

n
v

P
o

o
lin

g

FC
1

FC
2

Training - Example

𝜃11 𝜃12

𝜃21 𝜃22

𝜃11 𝜃12

𝜃21 𝜃22

Region over which the Σ𝑥. 𝛿 summation must be taken

Recall the weight update in
a fully connected layer

𝜃𝑖𝑗
𝑥𝑖 𝛿𝑗

Δ𝜃𝑖𝑗 = −𝛼𝑥𝑖𝛿𝑗

Analogy for convolutional layers

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟏𝟒

𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟑 𝒙𝟐𝟒

𝒙𝟑𝟏 𝒙𝟑𝟐 𝒙𝟑𝟑 𝒙𝟑𝟒

𝒙𝟒𝟏 𝒙𝟒𝟐 𝒙𝟒𝟑 𝒙𝟒𝟒

𝜃11 𝜃12

𝜃21 𝜃22

𝛿11
[𝑐]
𝛿12
[𝑐]
𝛿13
[𝑐]

𝛿21
[𝑐]
𝛿22
[𝑐]
𝛿23
[𝑐]

𝛿31
[𝑐]
𝛿32
[𝑐]
𝛿33
[𝑐]

𝑎11
[𝑐]
𝑎12
[𝑐]
𝑎13
[𝑐]

𝑎21
[𝑐]
𝑎22
[𝑐]
𝑎23
[𝑐]

𝑎31
[𝑐]
𝑎32
[𝑐]
𝑎33
[𝑐]

⨂

Δ𝜃11 = −𝛼 𝑥11𝛿11
[𝑐]
−𝛼 𝑥12𝛿12

𝑐
− 𝛼…

Training - Example

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟏𝟒

𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟑 𝒙𝟐𝟒

𝒙𝟑𝟏 𝒙𝟑𝟐 𝒙𝟑𝟑 𝒙𝟑𝟒

𝒙𝟒𝟏 𝒙𝟒𝟐 𝒙𝟒𝟑 𝒙𝟒𝟒

𝛿11
[𝑐]

𝛿12
[𝑐]

𝛿13
[𝑐]

𝛿21
[𝑐]

𝛿22
[𝑐]

𝛿23
[𝑐]

𝛿31
[𝑐]

𝛿32
[𝑐]

𝛿33
[𝑐]

𝜃11 𝜃12

𝜃21 𝜃22

𝜃11 𝜃12

𝜃21 𝜃22

⨂
Δ𝜃11 Δ𝜃12

Δ𝜃21 Δ𝜃22

Δ𝜃 = −𝛼 𝑥⨂𝛿=−𝛼

Region over which the Σ𝑥. 𝛿 summation must be taken

Trained networks

 A trained network is capable to classifying certain inputs which were not
available during the training

 The convolutional kernels closer to the images will extract basic features
whereas, deeper kernels will extract more subtle features of inputs

Features activated by the 1st and 5th convolutional layer kernels in AlexNet

Conv1 Conv5

Trained networks

 Convolutional neural networks also face overfitting problem.

 The generalization techniques explained previously are applicable here as well.

 Apart from those methods, stochastic pooling is another generalization technique
used to avoid overfitting specifically in CNNs

Stochastic Pooling

0.1 0.5 0 0.9

0.2 0 0.3 0

1 0 1 0.5

0.3 0.7 0 1

0.2 0.9

0.7 1

Convolutional layer output

0.125 0.625 0 0.75

0.25 0 0.25 0

0.5 0 0.4 0.2

0.15 0.35 0 0.4

Assign a probability
to each element in
each activation in a
region

Select a value
depending upon
the assigned
probability

𝑝𝑖 =
𝑎𝑖

 𝑘∈𝑅𝐽 𝑎𝑘

Involves stochastically activating certain outputs in the pooling layer

0.1 0.5 0 0.9

0.2 0 0.3 0

1 0 1 0.5

0.3 0.7 0 1

GPU Implementation: Fully Connected Layer
Matrix-Matrix Operation

Convolutional Layer Structure - Revisited

Cr(1,1) Cg(1,1) Cb(1,1) C(1,1)
Σ

C(1,2)

Image
Input Channels

Kernels

Output Feature maps

Cr(1,2) Cg(1,2) Cb(1,2) f(C(1,1))f(C(1,2))

𝒇 is the activation function. Typical
functions include Sigmoid, ReLU, tanh

Conv Layer as Matrix-Matrix Operation - 1

1 2 3

4 5 6

7 8 9

1 2

3 4

1 2

3 4* =

Convert to matrix-matrix operation using Toeplitz Matrix

Kernel Input Fmap Output Fmap

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

1 2 3 4 = 1 2 3 4

Convolution

Matrix-Vector
Multiplication

Input Data in Replicated
(Toeplitz matrix w/
redundant data)

Conv Layer as Matrix-Matrix Operation - 2

1 2 3

4 5 6

7 8 9

1 2

3 4

1 2

3 4* =Kernel1

Input Fmap Output Fmap

1 2

3 4

1 2

3 4

1 2

3 4

1 2 3

4 5 6

7 8 9

Kernel2 Chnl 1 Chnl 2

1 2

3 4

Chnl 1

Chnl 2

Convolution layer with multiple kernels and channels

Conv Layer as Matrix-Matrix Operation - 3

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

1 2 3 4

=
1 2 3 4

Input Data in Replicated
(Toeplitz matrix w/
redundant data)

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

Multiple kernels and channels as Matrix-Matrix operation

