Neural Networks

KAUSHIK ROY

Non-linear hypothesis

What we already have:

High order polynomial logistic regression

Why do we still need Neuron Networks (NNs)?

Example: Housing sale prediction to a potential buyer

• Feature: # features = 100

$$x_1 = Size$$
 $x_2 = \# bedrooms$
 \vdots
 x_{100}

×100

Prediction:

If y = 1, predict house will be sold If y = 0, predict house will not be sold

• Hypothesis: suppose 2nd order poly logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1^2 + \theta_2 x_1 x_2 + \dots + \theta_{100} x_1 x_{100} + \theta_{101} x_2^2 + \theta_{102} x_2 x_3 + \dots + \theta_{100} x_2 x_{100} + \dots)$$
features in $h_{\theta}(x)$ is $O(n^2)$, (≈ 5000 features)

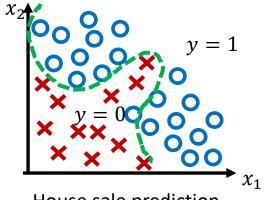
In high order polynomial logistic regression hypothesis:

The # features in k^{th} order polynomial is $O(n^k)$

For many machine learning problems, n and k are large,

which cause the learning model to be:

- Computationally expensive
- Severely overfitting



House sale prediction

Non-linear hypothesis

What we already have:

High order polynomial logistic regression
 Why do we still need Neural Networks (NNs) ?

Computer vision for car detection Input image size = 50x50 gray scale

• Feature:

$$x_1 = pixel \ 1 \ intensity$$

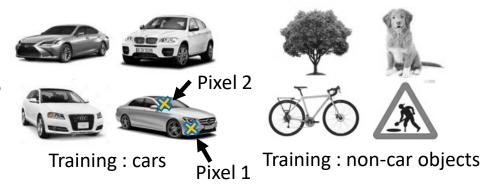
 $x_2 = pixel \ 2 \ intensity$
 \vdots
 x_{2500}

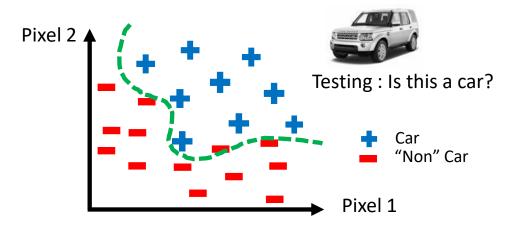
Prediction:

If y = 1, predict: object is a car If y = 0, predict: no car detected

• Hypothesis:

Suppose Quadratic polynomial logistic regression # Quadratic features $(x_i \times x_j)$: ≈ 3 million





Computer vision for car detection

> Neurons and the brain

What is Neural Networks (NNs)?

Neural Networks are algorithms that try to mimic the brain.

Neural Networks In the past:

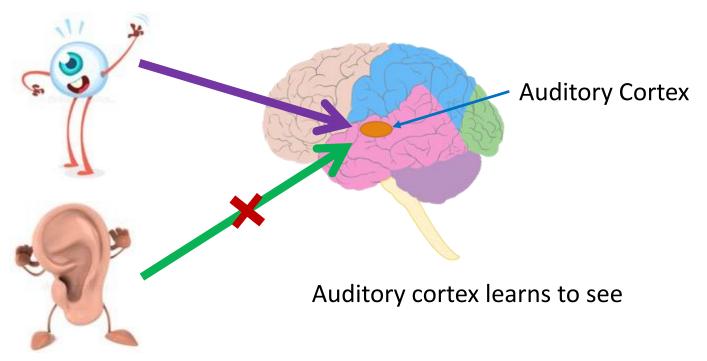
• Was very widely used in 80s and early 90s; popularity diminished in late 90s.

Neural Networks nowadays:

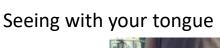
Recent resurgence; state-of-the-art technique for many applications.

> Neurons and the brain

The "one learning algorithm" hypothesis



> Neurons and the brain



Haptic belt: Direction sense

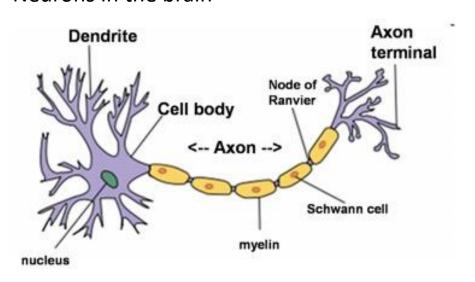
Human echolocation (sonar)

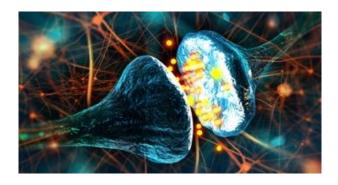
Implanting a 3rd eye

[BrainPort; Welsh & Blashch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Model representation

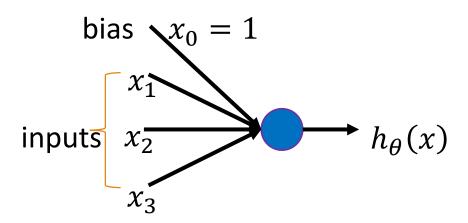
Neurons in the brain





Model representation

Neurons model: Logistic unit



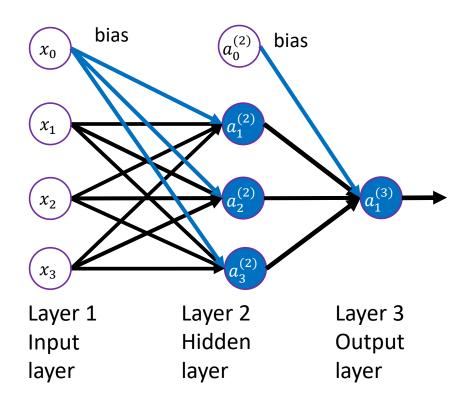
Sigmoid (logistic) activation function

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$
weights (parameters)

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

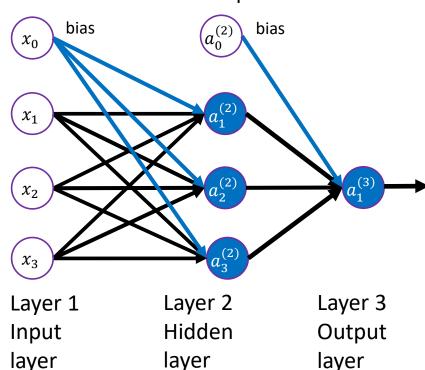
Model representation

Neurons Network: structure



Model representation

Neurons Network: computation



 $a_i^{(j)}$ = "activation" of unit i in layer j $\theta^{(j)}$ = matrix of weights controlling
function mapping from layer j to layer j+1

$$a_1^{(2)} = g \left(\theta_{1,0}^{(1)} x_0 + \theta_{1,1}^{(1)} x_1 + \theta_{1,2}^{(1)} x_2 + \theta_{1,3}^{(1)} x_3 \right)$$

$$a_2^{(2)} = g \left(\theta_{2,0}^{(1)} x_0 + \theta_{2,1}^{(1)} x_1 + \theta_{2,2}^{(1)} x_2 + \theta_{2,3}^{(1)} x_3 \right)$$

$$a_3^{(2)} = g \left(\theta_{3,0}^{(1)} x_0 + \theta_{3,1}^{(1)} x_1 + \theta_{3,2}^{(1)} x_2 + \theta_{3,3}^{(1)} x_3 \right)$$

$$h_{\theta}(x) = a_1^{(3)}$$

= $g\left(\theta_{1,0}^{(2)}a_0 + \theta_{1,1}^{(2)}a_1 + \theta_{1,2}^{(2)}a_2 + \theta_{1,3}^{(2)}a_3\right)$

If network has s_j units in layer j, s_{j+1} units in layer j+1, Then $\theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$

Model representation

Forward propagation: Vectorized implementation

$$a_{1}^{(2)} = g \left(\theta_{1,0}^{(1)} x_{0} + \theta_{1,1}^{(1)} x_{1} + \theta_{1,2}^{(1)} x_{2} + \theta_{1,3}^{(1)} x_{3} \right)$$

$$a_{2}^{(2)} = g \left(\theta_{2,0}^{(1)} x_{0} + \theta_{2,1}^{(1)} x_{1} + \theta_{2,2}^{(1)} x_{2} + \theta_{2,3}^{(1)} x_{3} \right)$$

$$a_{3}^{(2)} = g \left(\theta_{3,0}^{(1)} x_{0} + \theta_{3,1}^{(1)} x_{1} + \theta_{3,2}^{(1)} x_{2} + \theta_{3,3}^{(1)} x_{3} \right)$$

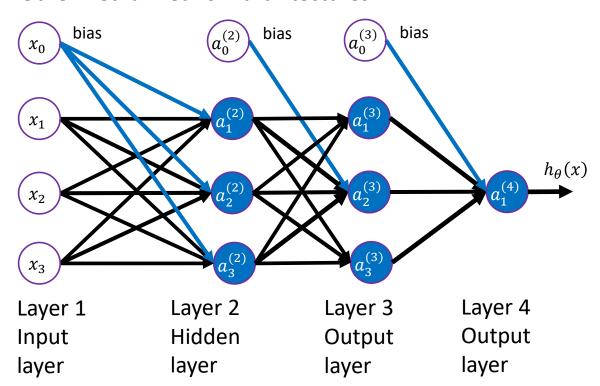
$$h_{\theta}(x) = a_{1}^{(3)}$$

$$= g \left(\theta_{1,0}^{(2)} a_{0} + \theta_{1,1}^{(2)} a_{1} + \theta_{1,2}^{(2)} a_{2} + \theta_{1,3}^{(2)} a_{3} \right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$
$$z^{(2)} = \theta^{(1)} a^{(1)}$$
$$a^{(2)} = g(z^{(2)})$$
$$z^{(3)} = \theta^{(2)} a^{(2)}$$
$$h_{\theta}(x) = a^{(3)} = g(z^{(3)})$$

Network Architecture

Other Neural Network architectures:



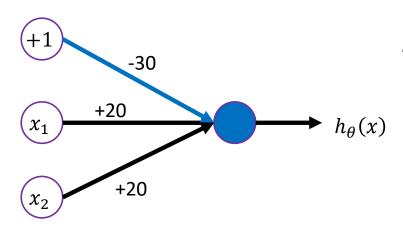
Neural Network with two hidden layers.

Examples and intuitions

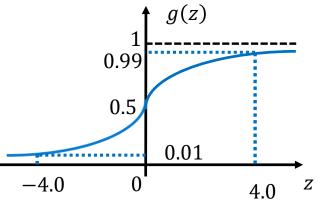
Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$



$$h_{\theta}(x) = g(-30 + 20x_1 + 20x_2)$$



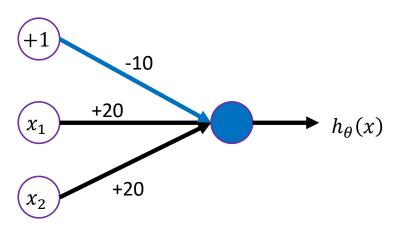
x_1	x_2	$h_{\theta}(x)$
0	0	$g(-30) \approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

Examples and intuitions

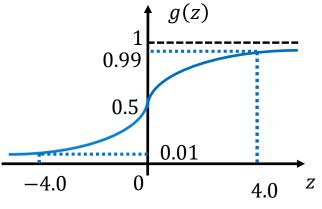
Simple example: OR

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ OR } x_2$



$$h_{\theta}(x) = g(-10 + 20x_1 + 20x_2)$$



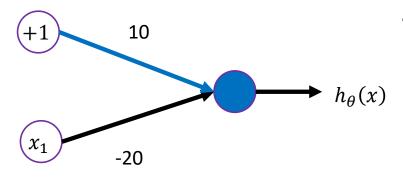
x_1	x_2	$h_{\theta}(x)$
0 0 1 1	0 1 0 1	$g(-10) \approx 0$ $g(10) \approx 1$ $g(10) \approx 1$ $g(30) \approx 1$

Examples and intuitions

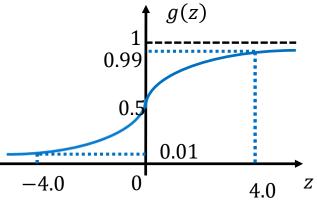
Simple example: NOT

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ NOT } x_2$



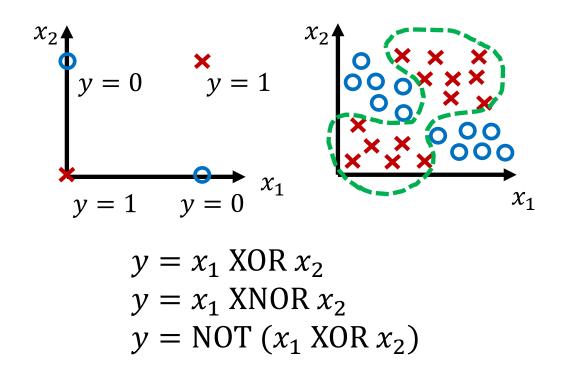
$$h_{\theta}(x) = g(10 - 20x_1)$$



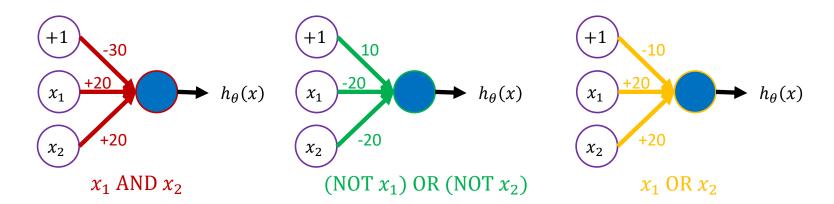
x_1	$h_{\theta}(x)$
0 1	$g(10) \approx 1$ $g(-10) \approx 1$

Examples and intuitions

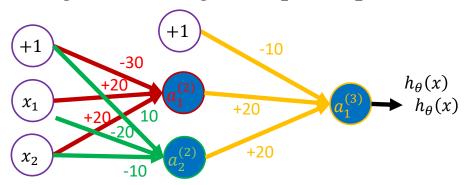
Non-linear classification examples: XOR/XNOR x_1 , x_2 are binary (0 or 1).



Examples and intuitions



Putting them them together: $x_1 \times XOR \times x_2$



x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\theta}(x)$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Multi-class Classification

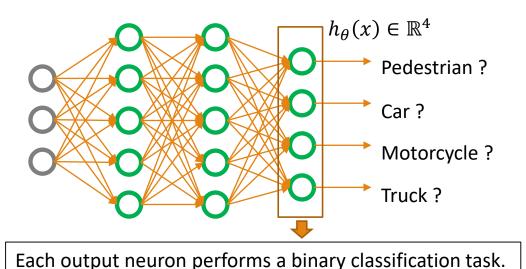
Multiple output units: One-vs-all

Pedestrian

Car

Motorcycle

Truck



Want
$$h_{\theta}(x) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, when pedestrian

Want
$$h_{\theta}(x) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

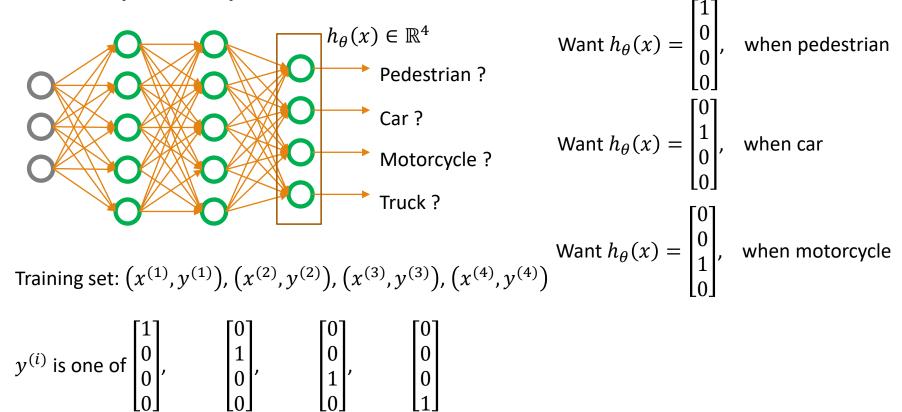
Want
$$h_{\theta}(x) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, when motorcycle

Multi-class Classification

Pedestrian Car

Multiple output units: One-vs-all

Motorcycle



Truck

