Regularization

KAUSHIK ROY

Motivation

Overfitting: The learned hypothesis may fit the training set very well ($J(\theta) \approx 0$), but fail to generalize to new examples (predict prices on new examples).

Motivation

Logistic regression overfitting

E.g. Housing sale prediction to a potential buyer

- Features: $x_1 = Size(feet^2)$; $x_2 = Price$ (\$)
- Prediction: y = 1, predict house will be sold
 y = 0, predict house will not be sold
- Hypothesis: logistic regression

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

Under fitting (high bias)

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$

 $\begin{aligned} h_{\theta}(x) &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 \\ &+ \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 \\ &+ \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \cdots) \end{aligned}$

Over fitting (high variance)

"Good" fitting

Overfitting

>Addressing overfitting

Option 1:

Reduce number of features

- Manually select which features to keep.
- Model selection algorithm

Option 2:

Regularization.

- Keep all the features, but reduce magnitude/values of parameters θ_i .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization

Intuition

Suppose we penalize parameters θ_3 and θ_4 by adding two additional items $K_1\theta_3^2$ and $K_2\theta_4^2$ to the overfitting hypothesis, in which $K_1 \gg 1$ and $K_2 \gg 1$ (e.g. $K_1 = 1000$ and $K_2 = 1000$)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + K_1 \theta_3^2 + K_2 \theta_4^2 \right]$$

In the learning process, to minimize the cost function $J(\theta)$, both θ_3 and θ_4 must be very small,

 $\theta_3 \approx 0$ and $\theta_4 \approx 0$. and the original overfitting hypothesis $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ becomes a less Overfitting -- close to $\theta_0 + \theta_1 x + \theta_2 x^2$.

Regularization

Formulation

Smaller values for parameters θ_0 , θ_1 , θ_2 , ..., θ_n lead to:

- "Simpler" hypothesis
- Less prone to overfitting

Penalize all parameters but θ_0 by adding an additional term $\lambda \sum_{i=1}^n \theta_i^2$ to the cost function:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_j^2 \right], \ (\lambda \text{ is regularization parameter})$$

Note, choosing too large a λ will lead to underfitting, because all parameters but θ_0 will be penalized and become too small -- the hypothesis becomes a constant value close to θ_0 e.g. hypothesis $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + ... \approx \theta_0$, if $\theta_1, \theta_1, ..., \theta_n \approx 0$.

How to choose a proper regularization parameter λ ?

Regularized Learning Models

Regularized linear regression

Recall regularized cost function for linear regression:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_i^2 \right],$$

(λ is regularization parameter)

Regularized gradient descent algorithm for linear regression: Repeat {

$$\begin{aligned} \theta_{0} &:= \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{0}^{(i)} \\ \theta_{j} &:= \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right] \\ &= \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \\ &\} \end{aligned}$$

Update rule of θ_0 remains identical as the original gradient descent formulation because θ_0 is not penalized. Update rules of other parameters are modified by adding a regularization term $\frac{\lambda}{m}\theta_j$ to the original gradient descent formula

Regularized Learning Models

Regularized logistic regression

Regularized cost function for logistic regression:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[log\left(h_{\theta}(x^{(i)})\right) * y^{(i)} + log\left(1 - h_{\theta}(x^{(i)})\right) * (1 - y^{(i)}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

(*i* = 1,2, ..., *m*)

Regularized gradient descent algorithm for logistic regression: Repeat {

$$\begin{aligned} \theta_0 &:= \theta_0 - \alpha \frac{1}{m} \sum_{\substack{i=1 \\ m}}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j - \alpha \left[\frac{1}{m} \sum_{\substack{i=1 \\ i=1}}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right] \\ &= \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \\ &\} \end{aligned}$$

Overfitting model is improved and the design boundary becomes smoother.

