Regularization

KAUSHIK ROY

Motivation

Overfitting: The learned hypothesis may fit the training set very well $(J(\theta) \approx 0)$, but fail to **generalize to new examples (predict prices on new examples).**

Motivation

➢ Logistic regression overfitting

E.g. Housing sale prediction to a potential buyer

- Features: $x_1 = Size(Fet^2)$; $x_2 = Price$ (\$)
- Prediction: $y = 1$, predict house will be sold $y = 0$, predict house will not be sold
- Hypothesis: logistic regression

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ + $\theta_3 x_1^2 + \theta_4 x_2^2$ $+ \theta_5 x_1 x_2$

Under fitting (high bias) "Good" fitting The Sover fitting (high variance)

Overfitting

➢Addressing overfitting

Option 1:

Reduce number of features

- Manually select which features to keep.
- Model selection algorithm

Option 2:

Regularization.

- Keep all the features, but reduce magnitude/values of parameters θ_j .
- Works well when we have a lot of features, each of which contributes a bit to predicting y .

Regularization

➢ Intuition

Suppose we penalize parameters θ_3 and θ_4 by adding two additional items $K_1\theta_3^2$ and $K_2\theta_4^2$ to the overfitting hypothesis, in which $K_1 \gg 1$ and $K_2 \gg 1$ (e.g. $K_1 = 1000$ and $K_2 = 1000$)

$$
J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + K_1 \theta_3^2 + K_2 \theta_4^2 \right]
$$

In the learning process, to minimize the cost function $J(\theta)$, both θ_3 and θ_4 must be very small,

 $\theta_3 \approx 0$ and $\theta_4 \approx 0$. and the original overfitting hypothesis $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ becomes a less Overfitting -- close to $\theta_0 + \theta_1 x + \theta_2 x^2$.

Regularization

➢ Formulation

Smaller values for parameters θ_0 , θ_1 , θ_2 , ..., θ_n lead to:

- "Simpler" hypothesis
- Less prone to overfitting

Penalize all parameters but θ_0 by adding an additional term $\lambda \sum_{i=1}^n \theta_i^2$ to the cost function:

$$
J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_i^2 \right], \text{ (λ is regularization parameter)}
$$

Note, choosing too large a λ will lead to underfitting, because all parameters but θ_0 will be penalized and become too small -- the hypothesis becomes a constant value close to θ_0 e.g. hypothesis $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \dots \approx \theta_0$, if θ_1 , θ_1 ,..., $\theta_n \approx 0.$

How to choose a proper regularization parameter λ ?

Regularized Learning Models

➢ Regularized linear regression

Recall regularized cost function for linear regression:

$$
J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_i^2 \right],
$$

 (λ) is regularization parameter)

Regularized gradient descent algorithm for linear regression: Repeat {

$$
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)}
$$
\n
$$
\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]
$$
\n
$$
= \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}
$$
\n
$$
\}
$$

Update rule of θ_0 remains identical as the original gradient descent formulation because θ_0 is not penalized. Update rules of other parameters are modified by adding a regularization term $\frac{\lambda}{m}\theta_j$ to the original gradient descent formula.

Regularized Learning Models

➢ Regularized logistic regression

Regularized cost function for logistic regression:

$$
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[\log \left(h_{\theta}(x^{(i)}) \right) * y^{(i)} + \log \left(1 - h_{\theta}(x^{(i)}) \right) * \left(1 - y^{(i)} \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}
$$

(*i* = 1,2,..., *m*)

Regularized gradient descent algorithm for logistic regression: Repeat {

$$
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)}
$$
\n
$$
\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]
$$
\n
$$
= \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)
$$

Overfitting model is improved and the design boundary becomes smoother.

