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Logistic Regression

E.g. Predict tumor type (Malignant or Benign) based on tumor size.
• Feature:
𝑥 = 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑚𝑚

• Prediction:
𝑦 = 1, tumor is malignant 
𝑦 = 0, tumor is benign

1 (Yes)

𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑥

0 (No)

Malignant ?

Recall linear regression for classification.
• Hypothesis: 
ℎ𝜃 𝑥 = 𝜃

𝑇𝑥, in which,

𝜃 =
𝜃0
𝜃1

,  and 𝑥 =
𝑥0
𝑥1

, 𝑥0 = 1

• Prediction:
Threshold classifier output ℎ𝜃 𝑥 at 0.5:
If ℎ𝜃 𝑥 ≥ 0.5, predict y = 1
If ℎ𝜃 𝑥 < 0.5, predict 𝑦 = 0

prediction 𝑦

ℎ𝜃 𝑥 = 𝜃
𝑇𝑥

A straight line ℎ𝜃 𝑥 is used to 
fit the data using linear regression. 

 Motivation

Prediction result of linear regression 
hypothesis is −∞ < 𝒉𝜽 𝒙 < ∞, but 
most of the time, the desired output 
𝒚 is in the range −𝟏 ≤ 𝒚 ≤ 𝟏



Logistic Regression

We want the classifier to output values in range 0 ≤ ℎ𝜃 𝑥 ≤ 1

A new hypothesis satisfying this requirement:
• Logistic function (also called sigmoid function) 

ℎ𝜃 𝑥 = 𝑔 𝜃
𝑇𝑥 ,

in which,  𝑔 𝑧 =
1

1+𝑒−𝑧

or in a more compact format:

ℎ𝜃 𝑥 =
1

1 + 𝑒−𝜃
𝑇𝑥

• The prediction result of logistic regression is between -1 and 1.

Similar to linear regression, after defining the logistic regression hypothesis, we 
need a learning algorithm to find the proper parameter 𝜃, so that the model can
predict desirable outputs. How to compute parameter 𝜃?

 Hypothesis and representation

1

𝑧

𝑔 𝑧

0.5

sigmoid function 

0



Logistic Regression

 Model interpretation

Interpretation
• Predicted output ℎ𝜃 𝑥 equals the estimated probability that 𝑦 = 1 for the 

given input 𝑥 and parameter 𝜃:
𝑃 𝑦 = 1 𝑥; 𝜃 = ℎ𝜃 𝑥

• The probability that 𝑦 = 0 on the same 𝑥 and 𝜃:
𝑃 𝑦 = 0 𝑥; 𝜃 = 1 − ℎ𝜃 𝑥

• Summation of probability that 𝑦 = 1 and 𝑦 = 0 equals 1.
𝑃 𝑦 = 0 𝑥; 𝜃 + 𝑃 𝑦 = 1 𝑥; 𝜃 = 1

E.g. Predict tumor type (Malignant or Benign) based on tumor size.

Logistic regression model:
Features: 𝑥 = 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑚𝑚
Prediction:
𝑦 = 1, tumor is malignant 
𝑦 = 0, tumor is benign

Logistic regression hypothesis:

ℎ𝜃 𝑥 =
1

1 + 𝑒−𝜃
𝑇𝑥

1

ℎ𝜃 𝑥 = 𝑃 𝑦 = 1
0.5

1 − ℎ𝜃 𝑥 = 𝑃 𝑦 = 0
ℎ𝜃 𝑥

feature space (𝜃𝑇𝑥)

0



Decision Boundary

 Linear decision boundary
Suppose ℎ𝜃 𝑥 = 𝑔 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 ,
in which 𝜃0, 𝜃1, 𝜃2 ∈ ℝ, 𝜃1 ≠ 0 𝑎𝑛𝑑 𝜃2 ≠ 0
Assume parameters 𝜃0, 𝜃1, 𝜃2 are already known.

Recall the logistic regression model
• Model expression:

ℎ𝜃 𝑥 = 𝑔 𝜃
𝑇𝑥 =

1

1 + 𝑒−𝜃
𝑇𝑥

• Model prediction:
Predict “𝑦 = 1” if 𝜃𝑇𝑥 ≥ 0
Predict “𝑦 = 0” if 𝜃𝑇𝑥 < 0

𝑥1

𝑥2
−
𝜃0
𝜃2

−
𝜃0
𝜃1

0

Predict “y=1”

Predict “y=0”

Decision boundary in the feature space

Note: To better illustrate decision boundary, in the following 
example, the parameter 𝜃 is assumed to be known. How to 
compute parameter 𝜃 will be introduced later.

• Decision boundary
Predict “y=1” if 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 ≥ 0

→ 𝑥1 +
𝜃2
𝜃1
𝑥2 ≥ −

𝜃0
𝜃1

Predict “y=0” if 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 < 0

→ 𝑥1 +
𝜃2
𝜃1
𝑥2 < −

𝜃0
𝜃1

1

0.5

ℎ𝜃 𝑥

𝜃𝑇𝑥
0



Decision Boundary

 Non-linear decision boundary
• Model expression 

ℎ𝜃 𝑥 = 𝑔 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1
2 + 𝜃4𝑥2

2 ,
𝜃0, ⋯ , 𝜃4 ∈ ℝ

Suppose parameter 𝜃 =

𝜃0
𝜃1
𝜃2
𝜃3
𝜃4

=

−1
0
0
1
1

The original hypothesis ℎ𝜃 𝑥 becomes: 

ℎ𝜃 𝑥 = 𝑔 −1 + 𝜃3𝑥1
2 + 𝜃4𝑥2

2

• Model prediction
Predict “y=1” if 𝑥1

2 + 𝑥2
2 ≥ 1

Predict “y=0” if 𝑥1
2 + 𝑥2

2 < 1

• Decision boundary
𝑥1
2 + 𝑥2

2 = 1

An example of more complex 
non-linear decision boundary 

𝑥1

𝑥1

𝑥2

𝑥2

More complex decision boundary is possible by using
higher order polynomial, i.e. ℎ𝜃 𝑥 = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2
+𝜃3𝑥1

2 + 𝜃4𝑥2
2 + 𝜃5𝑥1

3 + 𝜃6𝑥2
3 +⋯)



Cost Function and Gradient Descent

 Linear regression cost function
Recall the cost function of linear regression: 

𝐽 𝜃 =
1

𝑚
 

𝑖=1

𝑚
1

2
ℎ𝜃 𝑥

(𝑖) − 𝑦(𝑖)
2

For simplicity we use the following notation:

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥
(𝑖) , 𝑦(𝑖) =

1

2
ℎ𝜃 𝑥

(𝑖) − 𝑦(𝑖)
2

Original cost function is simplified to:

𝐽 𝜃 =
1

𝑚
 

𝑖=1

𝑚

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥
(𝑖) , 𝑦(𝑖)

in which ℎ𝜃 𝑥
(𝑖) indicates predicted output of the 𝑖𝑡ℎ example in dataset,

and 𝑦(𝑖) indicates desired output of the 𝑖𝑡ℎ example in dataset.

Cost function computes the summation of “cost” of all examples divided by the 
number of examples in the dataset.



Cost Function and Gradient Descent

 Linear regression cost function
Recall the cost function of linear regression: 

𝐽 𝜃 =
1

𝑚
 

𝑖=1

𝑚
1

2
ℎ𝜃 𝑥

(𝑖) − 𝑦(𝑖)
2

The cost function of linear regression may not be used for logistic regression because it 
becomes “non-convex” if the hypothesis 𝒉𝜽 𝒙 is non-linear, e.g. sigmoid function.

“non-convex” “convex” 𝐽 𝜃 𝐽 𝜃

ℎ𝜃 𝑥 ℎ𝜃 𝑥

Cost function becomes “non-convex” 
if the hypothesis ℎ𝜃 𝑥 is non-linear, 

e.g. sigmoid function ℎ𝜃 𝑥 =
1

1+𝑒−𝜃
𝑇𝑥

Cost function is “convex” if
the hypothesis ℎ𝜃 𝑥 is linear function, 
e.g. ℎ𝜃 𝑥 = 𝜃

𝑇𝑥

global minima

local minima

Gradient descent is not guaranteed to converge at global minima 
for “non-convex” cost function

global minima

0 0



Cost Function and Gradient Descent

Define a new cost function for logistic regression:

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥 , 𝑦 =  
−𝑙𝑜𝑔 ℎ𝜃 𝑥 , 𝑖𝑓 𝑦 = 1

−𝑙𝑜𝑔 1 − ℎ𝜃 𝑥 , 𝑖𝑓 𝑦 = 0
, 

and plot the cost function against ℎ𝜃 𝑥 as following:

 Logistic regression cost function

𝑐𝑜𝑠𝑡

ℎ𝜃 𝑥0 1

𝑐𝑜𝑠𝑡

ℎ𝜃 𝑥0 1

Plot 𝑐𝑜𝑠𝑡 when 𝑦 = 1
𝐢𝐟 𝒉𝜽 𝒙 = 𝟏, 𝒄𝒐𝒔𝒕 = 𝟎
𝐢𝐟 𝒉𝜽 𝒙 = 𝟎, 𝒄𝒐𝒔𝒕 → ∞

Plot 𝑐𝑜𝑠𝑡 when 𝑦 = 0
𝐢𝐟 𝒉𝜽 𝒙 = 𝟎, 𝒄𝒐𝒔𝒕 = 𝟎
𝐢𝐟 𝒉𝜽 𝒙 = 𝟏, 𝒄𝒐𝒔𝒕 → ∞

𝑦 = 1 𝑦 = 0



Cost Function and Gradient Descent

Logistic regression cost function:

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥 , 𝑦 =  
−𝑙𝑜𝑔 ℎ𝜃 𝑥 , 𝑖𝑓 𝑦 = 1

−𝑙𝑜𝑔 1 − ℎ𝜃 𝑥 , 𝑖𝑓 𝑦 = 0
,

Above expression can be written in a more compact but mathematically equivalent way:

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥 , 𝑦 = −𝑙𝑜𝑔 ℎ𝜃 𝑥 ∗ 𝑦 − 𝑙𝑜𝑔 1 − ℎ𝜃 𝑥 ∗ 1 − 𝑦 ,     

in which 𝑦 = 0 𝑜𝑟 1

Note that we use above function to compute the “cost” of one example, there are totally 𝑚
examples in dataset. As a result, a superscript 𝑖 is used to indicate example index in dataset. 

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥
(𝑖) , 𝑦(𝑖) = −𝑙𝑜𝑔 ℎ𝜃 𝑥

𝑖 ∗ 𝑦 𝑖 − 𝑙𝑜𝑔 1 − ℎ𝜃 𝑥
𝑖 ∗ 1 − 𝑦 𝑖 , 

in which 𝑖 = 1,2, … ,𝑚

The cost function of the entire dataset equals the average “cost” of all 𝑚 samples in it.

𝐽 𝜃 =
1

𝑚
 

𝑖=1

𝑚

𝑐𝑜𝑠𝑡 ℎ𝜃 𝑥
(𝑖) , 𝑦(𝑖) 𝑖 = 1,2, … ,𝑚

 Logistic regression cost function

Binary Cross-Entropy Loss



Cost Function and Gradient Descent

 Gradient descent for logistic regression 

How to compute the parameter 𝜃 for logistic regression model?

Recall logistic regression cost function:

𝐽 𝜃 = −
1

𝑚
 

𝑖=1

𝑚

𝑙𝑜𝑔 ℎ𝜃 𝑥
𝑖 ∗ 𝑦 𝑖 + 𝑙𝑜𝑔 1 − ℎ𝜃 𝑥

𝑖 ∗ 1 − 𝑦 𝑖

𝑖 = 1,2, … ,𝑚

Gradient descent algorithm for logistic regression:
Repeat {

𝜃𝑗 : = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽 𝜃0, 𝜃1, 𝜃2, ⋯𝜃𝑛 (𝛼 is learning rate, 𝑛 is number of features)

= 𝜃𝑗 − 𝛼
1

𝑚
 

𝑖=1

𝑚

ℎ𝜃 𝑥
(𝑖) − 𝑦(𝑖) 𝑥𝑗

(𝑖)

} (simultaneously update for every 𝑗 = 0, 1, … , 𝑛)
Note that the update rules of gradient descent for linear regression and logistic regression 
are the same, but the hypothesis function 𝒉𝜽 𝒙 and cost function 𝑱 𝜽 , which will be 
plugged into the gradient descent formula are different. 


