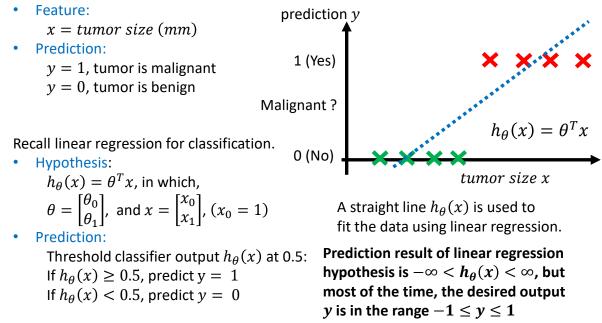
Logistic Regression for Classification

KAUSHIK ROY

Logistic Regression

Motivation

E.g. Predict tumor type (Malignant or Benign) based on tumor size.



Logistic Regression

Hypothesis and representation

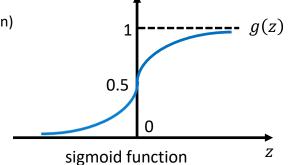
We want the classifier to output values in range $0 \le h_{\theta}(x) \le 1$

A new hypothesis satisfying this requirement:

• Logistic function (also called sigmoid function)

$$h_{\theta}(x) = g(\theta^{T}x),$$

in which, $g(z) = \frac{1}{1+e^{-z}}$
or in a more compact format:
 $h_{\theta}(x) = \frac{1}{1+e^{-\theta^{T}x}}$



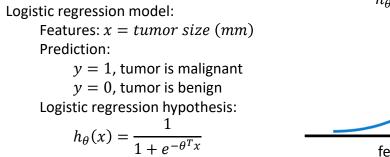
• The prediction result of logistic regression is between -1 and 1.

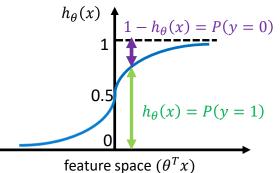
Similar to linear regression, after defining the logistic regression hypothesis, we need a learning algorithm to find the proper parameter θ , so that the model can predict desirable outputs. How to compute parameter θ ?

Logistic Regression

Model interpretation

E.g. Predict tumor type (Malignant or Benign) based on tumor size.





Interpretation

• Predicted output $h_{\theta}(x)$ equals the estimated probability that y = 1 for the given input x and parameter θ :

 $P(y = 1 | x; \theta) = h_{\theta}(x)$

- The probability that y = 0 on the same x and θ : $P(y = 0|x; \theta) = 1 - h_{\theta}(x)$
- Summation of probability that y = 1 and y = 0 equals 1. $P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$

Decision Boundary

Linear decision boundary

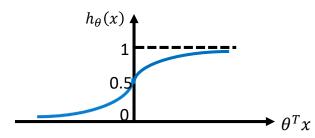
Recall the logistic regression model

Model expression:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

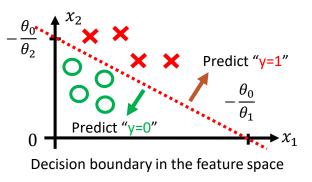
• Model prediction:

Predict "y = 1" if $\theta^T x \ge 0$ Predict "y = 0" if $\theta^T x < 0$



Note: To better illustrate decision boundary, in the following example, the parameter θ is assumed to be known. How to compute parameter θ will be introduced later.

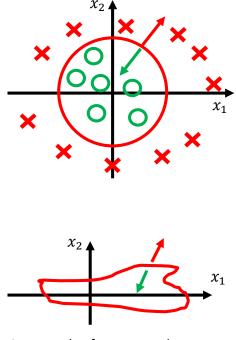
Suppose $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$, in which $(\theta_0, \theta_1, \theta_2 \in \mathbb{R}, \ \theta_1 \neq 0 \ and \ \theta_2 \neq 0)$ Assume parameters $\theta_0, \theta_1, \theta_2$ are already known.



• Decision boundary Predict "y=1" if $\theta_0 + \theta_1 x_1 + \theta_2 x_2 \ge 0$ $\rightarrow x_1 + \frac{\theta_2}{\theta_1} x_2 \ge -\frac{\theta_0}{\theta_1}$ Predict "y=0" if $\theta_0 + \theta_1 x_1 + \theta_2 x_2 < 0$ $\rightarrow x_1 + \frac{\theta_2}{\theta_1} x_2 < -\frac{\theta_0}{\theta_1}$ • BRI

Decision Boundary

Non-linear decision boundary



An example of more complex non-linear decision boundary

Model expression $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2),$ $(\theta_0, \cdots, \theta_4 \in \mathbb{R})$ $\begin{bmatrix} \theta_0 \\ \theta_c \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

Suppose parameter
$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

The original hypothesis $h_{\theta}(x)$ becomes: $h_{\theta}(x) = g(-1 + \theta_3 x_1^2 + \theta_4 x_2^2)$

- Model prediction Predict "y=1" if $x_1^2 + x_2^2 \ge 1$ $x_1^2 + x_2^2 = 1$ Predict "y=0" if $x_1^2 + x_2^2 < 1$
 - Decision boundary

More complex decision boundary is possible by using higher order polynomial, i.e. $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ $+\theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1^3 + \theta_6 x_2^3 + \cdots)$

Linear regression cost function

Recall the cost function of linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

For simplicity we use the following notation:

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Original cost function is simplified to:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

in which $h_{\theta}(x^{(i)})$ indicates predicted output of the *ith* example in dataset,
and $y^{(i)}$ indicates desired output of the *ith* example in dataset.

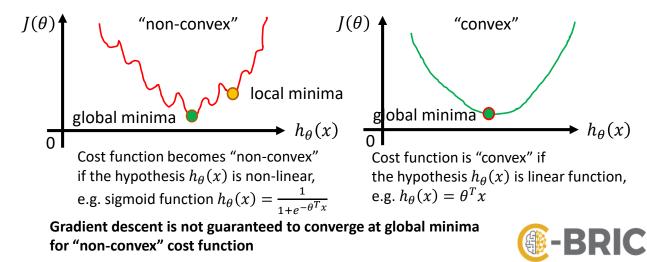
Cost function computes the summation of "cost" of all examples divided by the number of examples in the dataset.

Linear regression cost function

Recall the cost function of linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

The cost function of linear regression may not be used for logistic regression because it becomes "non-convex" if the hypothesis $h_{\theta}(x)$ is non-linear, e.g. sigmoid function.

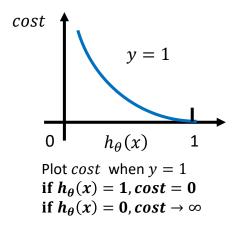


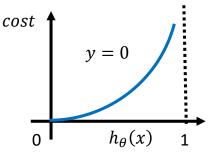
Logistic regression cost function

Define a new cost function for logistic regression:

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & \text{if } y = 1\\ -log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

and plot the cost function against $h_{\theta}(x)$ as following:





Plot *cost* when y = 0if $h_{\theta}(x) = 0$, *cost* = 0 if $h_{\theta}(x) = 1$, *cost* $\rightarrow \infty$

Logistic regression cost function

Logistic regression cost function:

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & \text{if } y = 1\\ -log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

Binary Cross-Entropy Loss

Above expression can be written in a more compact but mathematically equivalent way: $cost(h_{\theta}(x), y) = -log(h_{\theta}(x)) * y - log(1 - h_{\theta}(x)) * (1 - y),$ in which (y = 0 or 1)

Note that we use above function to compute the "cost" of one example, there are totally m examples in dataset. As a result, a superscript (i) is used to indicate example index in dataset.

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = -log(h_{\theta}(x^{(i)})) * y^{(i)} - log(1 - h_{\theta}(x^{(i)})) * (1 - y^{(i)}),$$

in which (i = 1,2, ..., m)

The cost function of the entire dataset equals the average "cost" of all m samples in it.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)}) \qquad (i = 1, 2, ..., m)$$

Gradient descent for logistic regression

How to compute the parameter θ for logistic regression model?

Recall logistic regression cost function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[log(h_{\theta}(x^{(i)})) * y^{(i)} + log(1 - h_{\theta}(x^{(i)})) * (1 - y^{(i)}) \right]$$

(*i* = 1,2, ..., *m*)

Gradient descent algorithm for logistic regression:

Repeat {

 $\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}, \theta_{2}, \dots \theta_{n}) \quad (\alpha \text{ is learning rate, } n \text{ is number of features})$ $= \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$

} (simultaneously update for every j = 0, 1, ..., n)

Note that the update rules of gradient descent for linear regression and logistic regression are the same, but the hypothesis function $h_{\theta}(x)$ and cost function $J(\theta)$, which will be plugged into the gradient descent formula are different.

