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Logistic Regression

> Motivation
E.g. Predict tumor type (Malignant or Benign) based on tumor size.
* Feature: prediction y .
x = tumor size (mm) 4 o
* Prediction: o*
y = 1, tumor is malignant 1(Yes) X ‘?.(' X X
y = 0, tumor is benign "."
Malignant ? o
. : o » he(x) =6Tx
Recall linear regression for classification. ,o°
* Hypothesis: 0 (NO) e . >
hg(x) = 8T x, in which, tumor size x
9 = [go], and x = [fco]' (xo = 1) A straight line hg (x) is used to
1 1

o fit the data using linear regression.
* Prediction:

Threshold classifier output hg(x) at 0.5: Prediction result of linear regression

If hg(x) = 0.5, predicty = 1 hypothesis is —co < hy(x) < o, but

If hg(x) < 0.5, predicty = 0 most of the time, the desired output
yisintherange—-1 <y <1
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Logistic Regression

> Hypothesis and representation

We want the classifier to output valuesinrange 0 < hy(x) <1

A new hypothesis satisfying this requirement: 1
* Logistic function (also called sigmoid function) o P —— g(z)

he(x) = g(67x),

in which, g(z) = 1;_2

or in a more compact format:

1 0
Mol = e

0.5

v

sigmoid function

* The prediction result of logistic regression is between -1 and 1.
Similar to linear regression, after defining the logistic regression hypothesis, we

need a learning algorithm to find the proper parameter 8, so that the model can
predict desirable outputs. How to compute parameter 6?
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Logistic Regression

>

Model interpretation

E.g. Predict tumor type (Malignant or Benign) based on tumor size.

- . hg (x)
Logistic regression model:
Features: x = tumor size (mm) 1
Prediction:
y = 1, tumor is malignant
y = 0, tumor is benign
Logistic regression hypothesis:

1
hg(x) = ————=
1+e-07x feature space (87 x)

1 hg(x) = Py = 0)

0.5
he(x) = P(y = 1)

o
>

Interpretation
* Predicted output hy(x) equals the estimated probability that y = 1 for the

given input x and parameter 6:
P(y = 1|x;0) = hy(x)
* The probability that y = 0 on the same x and 6:
P(y =0l|x;0) =1 —hg(x)
* Summation of probability that y = 1 and y = 0 equals 1.

P(y=0|x;0)+ P(y =1|x;0) =1 @ _BRIC



Decision Boundary

> Linear decision boundary

Recall the logistic regression model
*  Model expression:

ho(x) = g(8Tx) =

*  Model prediction:
Predict“y = 17if8Tx > 0
Predict“y = 0”if8Tx < 0

1
1+ e 0

hg (x) A
1 —————————
0.

(0]

Note: To better illustrate decision boundary, in the following
example, the parameter @ is assumed to be known. How to
compute parameter 8 will be introduced later.

Suppose hg(x) = g(6y + 0,x1 + 05x5),
in which (90,91,92 € R, 91 # 0 and 92 * 0)
Assume parameters 8, 61, 8, are already known.

- R —

.." 01
Predict “y=0" e,

0 “> X
Decision boundary in the feature space

O...,.....
OO / ‘e, / %

* Decision boundary
Predict “y=1"if 8y + 0:x1 + O,x, = 0

0, 0o

+—x, =2 ——

- X1 0, X2 0,
Predict “y=0"if 8y + 01x1 + O,x, <0

4 0, < 0o

ﬁ — — —

X1 0, X2 0,
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Decision Boundary

» Non-linear decision
X, A

X X

4
X /0 X
QI %

* %

X2 A f

=

An example of more complex
non-linear decision boundary

boundary

*  Model expression
hg(x) = g(@o + lel + 92x2 + 93x]2_ + 9436‘%),

(6o,++,04 ER)
6o -1
01 0
Suppose parameter 8 = |6, =| 0
03 1
0, 1

The original hypothesis hy(x) becomes:
hg(x) = g(—1 + 83x% + 0,x%)

* Model prediction » Decision boundary
Predict “y=1" if x? + x3 > 1 xZ+x3=1
Predict “y=0" if x? + x% < 1

More complex decision boundary is possible by using
higher order polynomial, i.e. hg(x) = g(6y + 61x1 + 0,x,

+03x2 + 043 + 05x3 + Ogx5 + )
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Cost Function and Gradient Descent

> Linear regression cost function

Recall the cost function of linear regression:
m
1 1 . N2
0 =_Z_ ho (@) — @
16) =5 5 (10 %) =)
=
For simplicity we use the following notation:
. . 1 . .
cost(hg(x®),y®) = E(hg(x(l)) —y®)?
Original cost function is simplified to:

1) = =) cost(hg(x©), y®)

=1
in which hg(x®) indicates predicted output of the ith example in dataset,
and y® indicates desired output of the ith example in dataset.

Cost function computes the summation of “cost” of all examples divided by the
number of examples in the dataset.
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Cost Function and Gradient Descent

> Linear regression cost function

Recall the cost function of linear regression:

m
1 1 . N2
0 =_Z_ o (@) — @
10 =525 (ha(x) =)
=
The cost function of linear regression may not be used for logistic regression because it
becomes “non-convex” if the hypothesis hg(x) is non-linear, e.g. sigmoid function.

J(6)1 “non-convex” J(O) 4 “convex”
local minima
global minima - global minima .
Cost function becomes “non-convex” Cost function is “convex” if
if the hypothesis hg(x) is non-linear, the hypothesis hy(x) is linear function,
e.g. sigmoid function hg(x) = ” ieT e.g. hg(x) = 0"x
e X

Gradient descent is not guaranteed to converge at global minima
for “non-convex” cost function E‘% - B R I C



Cost Function and Gradient Descent

> Logistic regression cost function

Define a new cost function for logistic regression:

cost(hg(x),y) = —lOg(he(x)), ify=1

and plot the cost function against hy(x) as following:

—log(1—he(x)), if y=0"

cost ¢ cost ¢
y=1 y=0
> — : >
0 hg(x) 1 0 ho(x) 1
Plot cost wheny =1 Plot cost wheny =0
if hg(x) =1,cost =0 if hg(x) = 0,cost =0
if hg(x) = 0,cost - if hg(x) = 1,cost »
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Cost Function and Gradient Descent

> Logistic regression cost function

Logistic regression cost function:
—log(hg (x)), ify=1 Binary Cross-Entropy Loss

cost(hg(x),y) = —log(1— hg(x)); ify=0"

Above expression can be written in a more compact but mathematically equivalent way:
cost(hg(x),y) = —log(hg(x)) *y — log(1 — he(x)) * (1 —y),
in which (y = 0 or 1)

Note that we use above function to compute the “cost” of one example, there are totally m
examples in dataset. As a result, a superscript (i) is used to indicate example index in dataset.

cost (g (x(2), ) = —log (ha(x9)) +y© ~ g (1= hy () « (1 = y19),
in which (i = 1,2, ..., m)

The cost function of the entire dataset equals the average “cost” of all m samples in it.
m

J6) =) cost(hg(x9),y®)  (i=12,..,m)
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Cost Function and Gradient Descent

> Gradient descent for logistic regression

How to compute the parameter 6 for logistic regression model?

Recall logistic regression cost function:

J(6) = —%Z |10g (he(x®)) * y® + log (1 — he(x®)) + (1 - y @)
- (i=12,..,m)

Gradient descent algorithm for logistic regression:
Repeat {

0;:=0; — a%](@o, 6., 6,,---0,) (aislearning rate, n is number of features)
]

m

1 . G

=6 - QEZ(;@ (x®) - y©) x®
i=1

} (simultaneously update for every j = 0, 1, ..., n)
Note that the update rules of gradient descent for linear regression and logistic regression
are the same, but the hypothesis function hy(x) and cost function J(@), which will be

plugged into the gradient descent formula are different. %ﬂ BR IC



