Linear Regression with Multiple Variables

KAUSHIK ROY

Multiple Features for Linear Regression

 \triangleright Hypothesis and notations

Example: housing price prediction (Lafayette, IN)

Hypothesis: To predict the sale price y of homes $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \cdots + \theta_n x_n$ $(n$ is total number of features)

$$
x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}
$$

For convenience of notation, define $x_0 = 1$

Hypothesis expression is simplified to $h_{\theta}(x) = \theta^{T} x$ (T denotes matrix transpose)

Features: $x_1 =$ Size ($feet^2$) x_2 = Number of bedrooms x_3 = Age of home (years) ⋮

Prediction: $v =$ Price

► Gradient descent algorithm
\nHypothesis:
$$
h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n
$$

\nParameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_n$
\nCost function: $J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$
\nin which $(1 \le i \le m)$
\n(n is the number of features and **m** is the number of training samples) $\begin{bmatrix} x_n^{(i)} \\ x_n^{(i)} \end{bmatrix}$

Gradient descent:

Repeat {

$$
\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1, \theta_2, \cdots \theta_n) \quad (\alpha \text{ is learning rate})
$$

= $\theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$

} (simultaneously update for every $j = 0, 1, ... n$)

- Gradient descent in practice I: Feature Scaling
- Idea: Make sure features are on a similar scale, so that gradient descent can converge more quickly.

► Gradient descent in practice I: Feature Scaling

Feature Scaling

• Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean

(Do not apply to $x_0 = 1$)

E.g.
$$
x_i \leftarrow \frac{x_i - \mu_i}{S_i}
$$

\n μ_i : Average value of x_i in the training set
\n S_i : range of value (max-min) or standard deviation of x_i in the
\ntraining set.

 \triangleright Gradient descent in practice II: Learning rate

Gradient descent

 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta}$ $\frac{\partial}{\partial \theta_j} J(\theta)$ (α is learning rate)

- "Debugging": How to make sure gradient descent is working correctly ?
- How to choose learning rate α ?

- For sufficiently small α , $J(\theta)$ should degrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

 \triangleright Gradient descent in practice II: Learning rate

Gradient descent $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta}$ $\frac{\partial}{\partial \theta_j} J(\theta)$ (α is learning rate) If α is too small: slow convergence. If α is too large: $J(\theta)$ may oscillate and may not converge. To choose α , try \cdots , 0.001, 0.01, 0.1, 1, \cdots and plot $J(\theta)$ vs # iterations figure to determine the proper α to use. $J(\theta)$ Global minima Parameter θ

Choose the largest possible α (or slightly smaller value) as the learning rate for **gradient descent.**

Features and Polynomial Regression

 \triangleright Feature selection

Selecting features width W , depth D

Learning models Model 1: $h_{\theta}(x) = \theta_{0} + \theta_{1} \times W + \theta_{2} \times D$

Model 2: Define new feature area: $A = W \times D$ $h_{\theta}(x) = \theta_0 + \theta_1 \times A$

Features: $W = width (feet)$ $D = depth (feet)$

Prediction: $v =$ Price

Choice of different features lead to different learning models, and powerful models can be built by choosing appropriate features

Features and Polynomial Regression

