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Multiple Features for Linear Regression

> Hypothesis and notations

Example: housing price prediction (Lafayette, IN)

Hypothesis: To predict the sale price y of homes
hg(X) = 00 + 91x1 + 92X2 + 933(3 + -+ ann
(n is total number of features)

Xo 6, Features:
X4 0, x; = Size (feet?)
x =|x2| e R 0 =6, |e R X, = Number of bedrooms
: : x5 = Age of home (years)
Xn 10, :
For convenience of notation, define xo = 1 I
Prediction:
y = Price

Hypothesis expression is simplified to
hg(x) = 8Tx (T denotes matrix transpose)
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Gradient Descent for Linear Regression

> Gradient descent algorithm
Hypothesis: hy(x) = 8Tx = Oyxy + 01%1 + O35 + -+ + O %,
O]
Parameters: 6, 84, 85,-- 6, ((’_)
- . . l
Cost function: J(6y, 84, 64, 6,) = ﬁzzﬁl(hg(x(‘)) — y(l))z x® = xl.
inwhich (1 <i <m)
(nis the number of features and m is the number of training samples) L

0.

Gradient descent:
Repeat {

0

]=0

J

m

1 z . . ;

= 9]' - CZE (hg (X(l)) - _’y(l)) xj(l)
i=1

— a%](@o, 0., 65,--0,) (aislearning rate)
j

} (simultaneously update for every j = 0,1, ...n)
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Gradient Descent for Linear Regression

> Gradient descent in practice I: Feature Scaling

Idea: Make sure features are on a similar scale, so that gradient descent can converge
more quickly.
__ size (feet?)

E.g. housing prices prediction X1 2000 (0=x =1)
Xy = size (0 — 2000 feetz) X, = number ofsbedrooms (0 < X, < 1)
X, = number of bedrooms (1 —5)
0, A
6.4 2 J(6)
> 0, > 0

Very skewed contour of cost function J(6) Gradient descent can find a more direct
in feature space makes it very difficult for path to the global minima after feature
gradient descent to quickly find the global scaling.
minima.
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Gradient Descent for Linear Regression

> Gradient descent in practice I: Feature Scaling

Feature Scaling

* Mean normalization

Replace x; with x; — u; to make features have approximately
zero mean

(Do not apply to x; = 1)

E.g x; « x’S—l”l

Ui Average value of x; in the training set

S;: range of value (max-min) or standard deviation of x; in the

training set.
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Gradient Descent for Linear Regression

> Gradient descent in practice Il: Learning rate

Gradient descent

a . .
0;:=06; — aaTj](H) (o is learning rate)

“Debugging”: How to make sure gradient descent is working correctly ?
* How to choose learning rate a ?

J(6) J(6) J(6)

J(0) oscillation indicates
4  J(6) should decrease 4 J(0) increases afterevery A

gradient descent is not

after every iteration iteration indicates gradient working properly
descent is not working e Usesmaller a
properly.

* Use smaller M
1 1 1 Ly | 1 1 Ly
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
No. of iterations No. of iterations No. of iterations

For sufficiently small «, J(0) should degrease on every iteration.
But if a is too small, gradient descent can be slow to converge.
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Gradient Descent for Linear Regression

> Gradient descent in practice ll: Learning rate

Gradient descent

0 . .
0;:=06; — aa—ej](H) (ot is learning rate)

J(6) 4
If a is too small: slow convergence.

If a is too large: J(6) may oscillate and may not converge.
To choose a, try

,0001, 001, 01, 1, Global mmwp@
and plot J(0) vs # iterations figure to determine the Parameter 0
proper a to use.

Choose the largest possible a (or slightly smaller value) as the learning rate for
gradient descent.
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Features and Polynomial Regression

> Feature selection e E
/";_w = Y

Selecting features
width W, depth D

e

Learning models = -
Model 1 T Wiggh > < gepth
hg(x) =6 +6; <X W +6,%x D Features:

W = width (feet)
Model 2: D = depth (feet)
Define new featurearea: A =W x D
hg(x) = 6o + 6, X A Prediction:

y = Price

Choice of different features lead to different learning models, and
powerful models can be built by choosing appropriate features
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Features and Polynomial Regression

> Polynomial regression

A Price
v * ’( 3 )(-»?‘- ---- —> 0y + 6;x + 0,V/x
ST S 6y + 01x + 0,x2
Features:
*’.29’ x = size (feet?)
> Prediction:
Home Size (x) y = Price

hg(x) = 00 + 91x1 + 92X2 + 93X3 (1 <x< 1,000)
= 0, + 0,(size) + 0,(size)? + 05(size)?
Note: Feature scaling is required for

x; = (size) (1 <x; <1,000) gradient descent to work efficiently
x; = (size)®? (1 < x, <1,000,000) due to drastic variance in feature
x3 = (size)® (1 < x3 <1,000,000,000) ranges.
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