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We live in a data-driven world!!!
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Artificial Intelligence (Al): Why now?
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Data is the new oil and Al is
the new electricity!!!!
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Artificial Intelligence (Al): Why now?
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Recognition
Analytics
Inference

Digital data explosion has created a great demand for embedded
platforms: mobile, wearables, Internet of Things (loT) devices etc. to
perform cognition

Cognition -
The device/computing system has to understand the data, make sense of it,
and then, reason, decide or make a prediction based on what it sees.
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Al enables Cognition

™ 7 Nicholas Carison
I

SAIL http:/ finstagr.am/p/KCXOr/

Done Tagging Add Location _Edit

fle Lacombe and Owen Thomas like this.

Nick Bilton

' Angela Nibbs.

Nicholas Saint

Bk Barrett Nic) hols.

Google Now

ama,;;on-com Recommended for You

Amazon.com has new recommendations for you based on items you purchased or
told us you own.

LOOK INSIDE! LOOK INSIDE!

Google Apps

s

Google Apps Google Apps Googlepedia: The
Deciphered: Compute in Administrator Guide: A Ultimate Google
the Cloud to Streamline Private-Label Web Resource (3rd Edition)

Your Desktop Workspace

&-BRIC



Al has even defeated humans!!

Google AlphaGo vs. Lee Sedol

https://www.youtube.com/wa
tch?v=jGyCsVhtW0OM

IBM Watson vs. Brad Ritter
IBM Deep Blue vs. & Ken Jennings A great documentary on
Kasparov Alphago and Al in general!!

Key driver of Al: Neural Networks/Deep learning
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https://www.youtube.com/watch?v=jGyCsVhtW0M

More recent success stories ...

Google AlphaGo vs. Lee Sedol
(1920 CPUs, 280 GPUs)

: : : - Artlflcfal intelligence used to recognlze
IBM's Al loses to Harish Natarajan, but still is primate faces in the wild

persuasive... @ - B RIC



Al is scaling...

» Across applications

> Investments

» and people...

NLP's ImageNet
moment has arrived

08.JUL.2018
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The Broaldway play premiered yeéterday .

Growth (relative to 2010)

Papers, Course enrollment,VC funding

Image analytics
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However... Many challenges yet to be addressed

‘Al Stats News: Chatbots Lead To 80%

Forbes CommunityVoice Connecting expert communities to the Forbes audience. What is This? 1

2,400 views | Feb 22. 2019. 08:30am

EXF Consumer Concerns About Self-Driving Cars

Ope

% of respondents naming the following reasons for their reluctance to use self-driving cars

Wouldn't feel safe 50%

@ Want to be in control at all times

45%

Don't want the car to make mistakes _ 43%
Driving is a pleasure for me _ 30%
Don't know enough about the technology _ 27%
Wouldn't trust it in mixed traffic _ 26%
&2 =
Unwilling to pay for self-driving functionality _ 25%
Concerned that car could be hacked _ 23% il =



Al Compute Demands (Training)

ML application trends (Training)
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» Estimated CO, emissions from NAS on Transformer (big) is:
o 315x higher than Air Travel from NY to SF/passenger

o 17x higher than average American (1 year)
o 5x higher than Car (1 lifetime)
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Efficiency Gap in Al

» Case study: Object recognition in a smart glass with a state-
of-the-art accelerator

Retinanet DNN* on a smart glass

Frames/sec 13.3
Energy/op 0.5 pJ/op
Energy/frame 0.15 J/frame
Google Edge TPU Time-to-die 64 mins
(2.1WH)
*300 GOPs/inference

Where do the in-efficiencies come from?

Algorithms Hardware Architecture Circuits and Devices

Ref: Venkataramani, S., Roy, K. and Raghunathan, A. “Efficient embedded learning for loT devices.” In 2016 @ - B R I‘
21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 308-311. IEEE.



Beyond compute efficiency....

» Learning with less data | e ——
> Generalization & T Meonme
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Neural Networks- Loosely brain-inspired*

Biological Neural Network Artificial Neural Network

Interconnected web of neurons/synapses

. Weights » Neurons
» Neurons are the computing .
elements N i Key operation:
N T, * MAC/ Dot-

product

(or Z;w; * I;)
* Non-Linearity
Accumulate (e.g. threshold,
(MAC) sigmoid, etc.)
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> Synapses/Weights store memory
and take part in learning/training | =
- Intelligence B




Training a Neural Network =2 Intelligence

Prediction:
Dog

Network discovers features from these pixel values,

Pretty incredible!!!
@-BRIC



Neural Networks: Different Levels of Bio-fidelity
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Key Enablers of Deep Learning

LeCun et al. 1990 # of Tmngigmrs

Input

&%E\D:; XX\ pentium’ II
Convolutions R IIyC
S bampu ~ 1Million Dot Product
Operations
Krizhevsky et al. 2012 # of transistors GPUs
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ALGORITHMS- Improved with HARDWARE- Improved with

better training, architectural innovations,
regularization, optimization transistor scaling etc. for more

strategies compute power

# of pixels used in training

107 NIST

# of pixels used in training

10" IMAGE

DATA- Improved
training/learning with
more data
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Neural Networks: Different Levels of Bio-fidelity
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Why is Energy-Efficiency a Concern?

Overfeat DNN on a smart glass

OMAP 4430 1.5 fps (ideal)
Energy/op 5x102nJ/op
(mobile GPU)

Energy/frame 0.16 J/frame
Time-to-die 25 min (ideal)
(2.1WH)

*3.2 GigaOPS/inference
1 OPS = 1 dot product operation

Case study: Object recognition in a smart glass

» Battery powered devices (smart-phones, smart-watches, drones etc.) have
resource or energy constraints.
* Enabling intelligence on these platforms necessitates energy-efficient deep

learning or neural network implementations
5 -BRIC



Where do Inefficiencies Come From?

Biological Neural Network Artificial Neural Network
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Algorithms, Computing Architecture, Neurons, Synapses........

Vastly interconnected web of neurons/synapses (1 billion neurons, 10000
synapses per neuron) =2 Compute and Memory are all intertwined and co-
located

Approximate and stochastic computation
Sparse, irregular, event-driven, massively parallel networks

&-BRIC



Hardware for Addressing Inefficiencies

» CMOS and Post-CMOS neuro-mimetic devices and interconnects
» Compute-near-memory / Compute-in-memory
» Approximate and stochastic neuronal and synaptic hardware

» Architectures that embody computing principles from the brain
(sparse, irregular, event-driven, massively parallel)

» Programming and evaluation frameworks

Approximate Devices

O & Stochastic
Accelerators Hardware

Multicores/GPUs

Energy
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Neural Networks: Simple Hardware Model
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Memory Architecture/Circuits
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Memory Bottleneck
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Post-CMOS Devices as Synaptic Memory Elements
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Hardware for Addressing Inefficiencies

Accelerators

Multicores/GPUs

Approximate computing Devices
& Stochastic

Hardware

=i H N N A 2
Input  Lay Layer 5§ ":'Eg »w'vh* | - y - tmne
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0 _ o Energy

 Can we have algorithms that can yield energy-efficiency?

e (Can the algorithms be hardware compatible?
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Algorithms for Addressing Inefficiencies

. i Han et al., 2016
» Pruning/ Compression st g
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synapses

-

» Quantization

> Binarized Networks — Dot Product to
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Han et al., 2016, 2017
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Algorithms, Systems, Circuits, & Devices

Top-Down: Device-driven Algorithms and Models
Spiking Networks  |sine Networks/Boltzmann Machine Bavesian Networks

Algorithm-Hardware
Co-Design Is necessary to
reap full benefits!!

RRAM

CMOS

Device physics to
mimic probabilistic
functionalities




Taking the Bio-plausible Route

/ Spiking Neural

Networks

Input Spike Train

Artificial Neural

Networks Output Spike Trair]

S

Multi-class Classification-
Sigmoid, Tanh, RelLU

— s/ Simple Classification —
Threshold Non-linearity
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Which Cues from the Brain can yield Energy-
Efficiency?

Discrete Spiking (LIF)? Long-range
HH? Stochastic Neurons!? P connections!?
)
. o Feedback!?
models ,‘ topology

® /

STDP? Backpropagation?

P | | Comm. & comp. with
y o g / . spikes? Tightly
Learning . Computing integrated compute
principles

algorithms | \ ' & memory!?
. event-driven?

Time-based coding?
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What is Machine Learning

Machine learning (ML) is the scientific study of algorithms
and statistical models that computer systems use to
progressively improve their performance on a specific task.
Machine learning algorithms build a mathematical model of
sample data, known as "training data", in order to make
predictions or decisions “without being explicitly
programmed” to perform the task.

"A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P
if its performance at tasks in T, as measured by P, improves
with experience E."
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https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Training_data

Al, ML, Deep Learning, Neural Networks, Spiking

Artificial Intelligence

Machine Learning

Brain-Inspired

Neural | Solving some aspect of
Detworis | g ‘intelligence’

* Machine Learning - Field of study that gives computers ability to learn without being
explicitly programmed

* Brain-inspired computation is a program or algorithm that takes some aspects of its
basic form or functionality from the way the brain works (‘Brain’ is the best source of
inspiration for intelligent applications)

* Neural Networks, Deep Learning have dot product or weighted summation of inputs,
notion inspired from brain’s synaptic/neuronal configuration

* Spiking — More deeply inspired from brain-like computations ‘spikes’ or ‘events’

&-BRIC



ML algorithms

» Supervised Learning — Regression, Classification
(Labels given)

» Unsupervised Learning — Clustering (No labels)

o Application — Google News, Social Network Analysis, Market
Segmentation etc.

» Others: Reinforcement Learning, Semi-supervised
Learning
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VERY SIMPLE NEURAL NETWORK: FRUIT CLASSIFICATION
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EXAMPLE: FRUIT CLASSIFICATION

x0=1

— 49,

X1
Wy
(length)
X9 W,
(mass)

Note: a single neuron ANN is called a “perceptron”
and can model only linear functions.

X1 W1 +x2W2 +b =0

Wo = b Activation Function
(bias)

u( ) = Unit Step Function

ﬁy(xlle)
y =0, Fruit A
y =1, Fruit B

@-BRIC



EXAMPLE: FRUIT CLASSIFICATION

140
Note: adding
120 additional layers to
the NN allows for
100 non-linear function
é modeling.
E@ 80
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40
b = 15
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