NUCLEAR ENGINEERING
GRADUATE STUDENT ORIENTATION

Fall 2023
August 15, 2023
Overview

- Welcome to Nuclear Engineering
- Introductions
- Faculty and Staff
- Support Services on Campus
- Policies, Procedures and Deadlines
- Graduate Manual
- Choosing an advisor (and committee)
- Making a plan of study
- Registration
- Student Organizations for Nuclear Engineering
Welcome to Nuclear Engineering at Purdue University

https://engineering.purdue.edu/NE

363 N. Grant Street, Lambertus 5281
West Lafayette, IN 47907
Phone: (765) 494-5739
ne@purdue.edu

Student Services Office:
363 N Grant Street, Lambertus 5281
Phone: (765) 494-5749
nuclss@purdue.edu
Graduate Program

Dr. Seungjin Kim
Capt. James F. McCarthy, Jr.
and Cheryl E. McCarthy Head and Professor

Dr. Lefteri Tsoukalas
Interim Graduate Program Chair
Professor
Kellie Reece
Executive Assistant to the Department Head
kreece@purdue.edu
765-494-5741

Teresa Luse
Associate Administrative Assistant
Travel and Purchasing
tluse@purdue.edu
765-494-5739

Academic Program Administrator
uclss@purdue.edu
765-494-5749
Jessica Johnson
john1690@purdue.edu
Marketing &
Communications Specialist
765-496-2133

Brin Reed
NE Business Manager
nuclbo@purdue.edu
765-494-5405

Account Assistant
nuclbopurdue.edu
765-494-2583
To provide an opportunity to learn about our faculty research

A total of 15 Faculty
- 9 Full Professors (2 Distinguished Professors)
- 3 Associate Professors
- 3 Assistant Professors

1 Research Faculty, 11 Adjunct/Courtesy Faculty and 4 Emeritus Faculty.

A total of 168 students as of Fall 2022 (62 Grad Students) 100% of graduate students have financial support
NUCLEAR ENGINEERING RESEARCH AREAS

- Instrumentation & control
- Nuclear Materials
- Radiation detection & measurement
- Reactor Physics
- Thermal-hydraulics
- Thermonuclear Fusion
- Verification / Uncertainty Quantification

- Cyber Security
- Food / Agricultural / Industry Applications.
- Nuclear Biomedical / Nuclear Medicine
- Nuclear non-proliferation.
- Nuclear Security
- Plasma Material Interactions
FACULTY AND RESEARCH
Dr. Hany Abdel-Khalik
Professor

Research Interests
• Computational Reactor Physics
• Reduced Order Modeling and Complexity Reduction
• Uncertainty Quantification and Sensitivity Analysis
• Data Assimilation and Model Calibration

Dr. Hitesh Bindra
Associate Professor

Research Interests
• Nuclear Reactor Safety
• Thermal-Fluid Science
• Statistical learning and Multiscale Safety for Advanced Reactors
• Thermal Energy Storage
• Micro-Reactor Applications
Dr. Stylianos Chatzidakis
Assistant Professor, Associate Reactor Director and Director of Nuclear Engineering Radiation Laboratory

Research Interests
• Computational radiation imaging and cosmic ray muon tomography
• Embedded sensors and nuclear sensing
• Quantum key distribution
• Instrumentation and control
• Spent nuclear fuel storage, transportation, and disposal
• Scientific machine learning, convolutional neural networks,

Dr. Chan Choi
Professor

Research Interests
• Thermonuclear Fusion Plasma Engineering
• Compact Tori Plasma / Reactor Studies
• Inertial Confinement Fusion Beam Target Stability
• Fusion Space Propulsion
• Direct Energy Conversion
• Nuclear Nonproliferation Enabling Capabilities
Dr. Allen Garner
Professor
Undergraduate Program Chair
Research Interests
• Biomedical Applications of Pulsed Power and Plasmas
• Plasma Physics
• Pulsed Power
• High Power Microwaves
• Theoretical Biophysics

Dr. Ahmed Hassanein
Paul L. Wattelet Distinguished Professor
Research Interests
• Plasma Material Interactions
• Magnetic and Inertial Fusion Research
• Computational Physics and Hydrodynamics
• Extreme Ultraviolet Lithography
• Laser and Discharge Produced Plasma
• Radiation and Particle Transport in Materials
• Biomedical Engineering Applications
Dr. Mamoru Ishii
Walter Zinn Distinguished Professor

Research Interests
• Two-phased Flow Experiments and Modeling Research
• 3-D Two-fluid Model and Interfacial Area Transport Equation Development
• Advanced Light Water Reactor Safety Code Development
• LWR and LMFBR Safety Analysis
• Severe Accident Analysis

Dr. Seungjin Kim
Capt. James F. McCarthy, Jr. and Cheryl E. McCarthy Head Professor

Research Interests
• Experimental Two-Phase Flow
• Thermal Hydraulics and Reactor Safety
• Multiphase Instrumentation
Dr. Martin Lopez-De-Bertodano
Associate Professor

Research Interests
• Experimental Two-Phase Flow
• Computational Fluid Dynamics
• Turbulence
• Thermal Hydraulics and Reactor Safety
• Nuclear Systems Simulation

Dr. Xiaoyuan Lou
Associate Professor

Research Interests
• Advanced manufacturing for nuclear
• Structural alloys and composites
• Material degradation in extreme environments
• Irradiation effects of materials
• Mechanical behavior of materials
• Data analytics and machine learning
Dr. Shripad Revankar
Professor, Graduate Program Chair

Research Interests
- Two-Phase Flow and Heat Transfer
- Advance Reactor Design and Testing
- Reactor Safety and Thermal Hydraulics
- Severe Accident Analysis
- Nuclear Hydrogen Generation
- Fuel Cell, Hydrogen Systems, Renewable Energy

Dr. Rusi Taleyarkhan
Professor

Research Interests
- Nano-to-Macro Scale Applications of Nuclear Science
- Nuclear Reactor Thermal-Hydraulics
- Acoustic Inertial Confinement Fusion Materials and Radiation Dosimetry
- Metastable Fluid
- Radiation Interactions with Matter and Surface Modifications
- Materials Synthesis and Transmutation
- Controlled Hydrogen Production
Dr. Lefteri Tsoukalas
Professor, Interim Graduate Program Chair

Research Interests
• Neurofuzzy Methodologies for Complex Power Systems Modeling, Diagnostics and Control.
• Intelligent Instrumentation Systems and Sensors
• Man-Machine Interface
• Autonomous Systems and Robotics

Dr. Yi Xie
Assistant Professor

Research Interests
• Corrosion in extreme environment
• Advanced nuclear fuel
• Sensor and sensor material
• Advanced sintering technology
• Geological repositories of radioactive waste
Dr. Yunlin Xu
Assistant Professor

Research Interests
• Reactor Physics
• Nuclear Reactor Design
• Advanced Nuclear Fuel Cells
• Homeland Security
Artificial Intelligence and Pattern Recognition Techniques for Supporting Safe, Economic, and Secure Operation of Digitally-controlled Systems/Processes

Topics of Interest: Condition Monitoring, Cybersecurity, Model Validation & Inference, VV&UQ, Reduced Order Modeling, Breaking AI, Outsourcing AI Data, Additive Manufacturing

- **DOE-NEUP**: AI for Additive Manufacturing Applications
- **LANL**: Active Fingerprinting for Safeguards Technology
- **IAEA**: AI Opportunities & Challenges of AI Nuclear Applications
- **ORNL**: Confidence Measures for Criticality Safety Applications
- **INL**: Model Validation for First-of-A-Kind Systems
- **INL**: Condition Monitoring for Nuclear Power Plants
- **INL**: Development of Cyber Toolkit for Industrial Control Systems
- **NSF**: Cybersecurity Covert Cognizance Technology – ICORP Cohort
Conduction Cooldown in shippable Micro-HTGRs

Loss of Forced Convection in Additively Manufactured Fuel – TCR

Gas-cooled reactor Thermal-fluidic challenges

Nuclear Energy Systems Transport (Nu-EST) Laboratory
Radiation Imaging and Nuclear Sensing (RADIaNS)

Muon tomography and muon spectrometry

New Radiation Imaging Modalities

New Sensors & Sensing Modalities

AI for NE

Autonomous control & remote operation of microreactors

Tunable X-rays

One sided X-ray backscatter imaging

Deep Conv Neural Nets & Physics-Guided ML
- Slowing-down of fast charged-particle fusion-products for ITER tokamak burning plasma applications
- High-density, high-temperature ICF target hydrodynamic response stability analyses
- Compact tori reactor studies for power production and mission-to-Mars fusion space propulsion applications
- Muon tomography for spent-fuel dry casks imaging and reduction of spent-nuclear-fuels w/ hybrid tandem mirror
- Nuclear Security through CNEC
High Power Electrophysics

- Breakdown deviates from well established theories at microscale due to field emission
 - Derive universal breakdown models to predict DC and AC gas breakdown.
 - Experiments to quantify the impact of nanostructures on breakdown.
- Derivation of theories unifying multiple electron emission mechanisms.
- Theoretical assessment of crossed-field devices for defense and radiation.
- Development of novel compact, composite-based nonlinear transmission lines to generate pulsed RF radiation.

Bioelectrics

- Apply electromagnetic radiation to modify cell membranes for cancer treatment, treat wounds, eradicate microorganisms, and reduce pain.
- Model electromagnetic interactions with cells and tissues.
 - Collaborating with
 - GE on wound healing
 - Nanovis on sterilization and wound healing.
 - Luna Innovation on pin remediation.
 - U.S. Army on pulsed RF bioeffects.

Application of nexus theory to assess transitions in electron emission mechanisms: CL (Child-Langmuir), MG (Mott-Gurney), FN (Fowler-Nordheim), and FD (Fowler-Dubridge). OL (Ohm’s law) is the resistive limit.

| 7 d | Electric pulses rapidly stimulate bone formation in osteoblasts (red) |
| 14 d | |
Combining State-of-the Art Modeling & Experiments at Purdue

High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS)

Center for Materials Under Extreme Environment (CMUXE)

- Nuclear Fusion
- Nanolithography
- National Security
- Numerical Methods
- Biomedical
Research in 3-D Two-phase Flow Modeling
Research in Subcooled Boiling and CHF
Two-fluid Model and Interfacial Area Transport
3-D Multigroup Two-phase Flow CFD Code
Local Two-phase Flow and Boiling Instrumentation
Integral Tests for LWR (PUMA, Natural Circulation BWR, Integrated PWR)
Annular Flow Droplet, Entrainment and Film Dynamics
Seismic Effects on Boiling Flow
Small Modular BWR Design Development
AI Use for Two-phase Flow Diagnostics
Nuclear Reactor Security and Protection
- Fundamentals of Two-Phase Flow Transport
 - Geometric Effects: Elbows, Spacer Grids, U-bend
 - Orientation Effects: Horizontal, Inclined, Vertical Upward & Downward Flows
- Advanced Two-Phase Flow Instrumentation
- Artificial Intelligence Applications

- Nuclear Reactor Safety and Analysis
 - Separate-effects Experiments on Versatile Test Reactor (VTR)
 - Jet Impingement Model Evaluation/Development
- Computational Model Evaluation Development
 - VTR CFD Design Tool
 - Nuclear Reactor System Analysis Codes
Two-Fluid Model (TFM) STABILITY

- More physics instead of “fixes”
- Bubbly and stratified-wavy flows
- Linear stability: well-posed
- Nonlinear stability: Lyapunov
- Achieve Verification (convergence)

TFM CFD

- Bubbly flows in ducts
- Two-phase turbulence modeling
- RANS and URANS simulations

Bubble Plume: TFM void fraction contours
(a) no collisions, (b) with collisions
Xiaoyun Lou - Associate Professor

Advanced Manufacturing
- Metal additive manufacturing
- Powder metallurgy-hot isostatic pressing
- Multi-material manufacturing
- Innovative manufacturing
 - Reactive additive manufacturing
 - Grain boundary engineering

Material Behavior in Extreme Environments
- Environmental assisted cracking
- Irradiated assisted stress corrosion cracking
- High temperature creep and creep-fatigue
- Radiation damage

Structural Materials
- Radiation and corrosion resistant steels
- Oxide dispersion alloys
- Weld metals
- Compositionally complex alloys
- Refractory alloys
- Nano composites

Innovative Testing and Characterization
- High-throughput alloy exploration
 - Gradient specimen synthesis and testing
 - Machine learning
- Mesoscale or microscale material testing and characterization
Shripad Revankar - Professor

Multiphase Flow and Fuel Cell Research Laboratory

- **Reactor Thermal Hydraulics and Safety**
 Scaling, Integral and Separate Effects Tests, Fuels, Severe Accident Experiments, CFD, and System Analysis Code

- **Multi-phase Flow**
 Two-Phase Instrumentation, Porous Media Multiphase, Microgravity Multiphase

- **Betavoltaic Cells**
 Tritium Loading on films, Betavoltaic Testing and Characterization

- **Hydrogen, Fuel Cell, Hybrid Energy**
 Nuclear Thermochemical Hydrogen Generation, Chemical Hydrogen Storage, Fuel Cells, Regenerative Systems, Hybrid Power Sources, Solar Thermal Energy Storage, PCMs
The effects of using axial magnetic field in extreme ultraviolet photon sources for nanolithography

To study the angular distribution of extreme ultraviolet (EUV) photon output in plasmas produced in tin planar targets by a Nd:YAG laser

Radiation energy recycling for enhancement of extreme ultraviolet photon sources in LPPs

To study recycling of both laser and resulting plasma-generated radiation and possible gains in conversion efficiency and/or power reduction over regular LPP devices when using droplets of tin target

Heat loads to diverter nearby components from secondary radiation evolved during plasma instabilities

Simulation of Tokamak events in entire SOL using real reactor design
Radiation sensor systems for special nuclear material monitoring, dosimetry, safe-guards/security environmental remediation, and nuclear energy applications.

Green (VOC free) radiation-thermal tailored polymers for coatings/adhesives in auto, engineering composite woods-materials construction industries and radiation dosimetry.

Nuclear reactor thermal-hydraulics and safety.

Energetic materials, vapor explosion sciences for nuclear-non nuclear industries, super-cooling.

Controlled hydrogen production; Nuclear material transmutation and synthesis.

Metastable fluid sciences and radiation interactions for fundamental physics.

Radiation interactions with matter and surface property tailoring.

Acoustic inertial confinement thermonuclear fusion.
In collaboration with ANL, A/SL pursues:

- Validation of point sensors in advanced reactors using long short-term memory networks
- Temporal and spatial validation of fiber optics distributed sensors using long short-term memory networks
- Physics-informed networks for the solution of stiff point PKEs for development of SMR digital twins
- Signal attenuation study in simulated microwave wireless channel using SeQUeNCE
- Generative adversarial networks for generation of augmented data for thermocouple sensors time series
Advanced Manufacturing Technology Development

- Ultrafast heating
- High-throughput manufacturing
- Tunable microstructure and property
- Energy saving
- Cost effective

Solid Oxide Cells
Smart Manufacturing and Industrialization

SOEC cross section

H₂ + O₂ \rightarrow H₂O + electricity(\Delta G) + heat (T\Delta S)

Environmental Degradation

- In-situ corrosion characterization
- Electrochemical corrosion technique
- Molten salt corrosion
- Light water reactor corrosion
- Sodium reactor corrosion

Advanced Nuclear Fuels Development

- Accident tolerant fuels
- Metal fuels
- Accident tolerant control rods
- Characterization
- Performance investigation
- Design and development
- Nuclear Reactor Core Simulation Code Development
 - Maintenance of US NRC Code license code PARCS
 - Develop simulation capability for new types of reactors such as SFR.
 - PARCS hybrid Macro-Micro depletion
 - Adaptive time step control for transient simulation

- Coupled Neutronics/Thermal-hydraulics system code development
 - TRACE/PARCS development for SFR simulation support
 - Merging PARCS into RELAP5.

- National Laboratory Collaboration (ANL)
 - Improving Convergence of GPASS

- International Collaboration(Tsinghua University)
 - Innovative Whole Core Transport
 - Hybrid Parallel Transport Simulation

- Improve Region-wise Cross Section Generation from Monte-Carlo whole Core Simulation
INTRODUCTIONS

• Name
• Where are you from?
• What are your favorite things to do?
• What are your research area(s) of interest?
Review of Additional Information
GRADUATE SCHOOL

www.purdue.edu/gradschool
Young Hall, Room 170
765-494-2600

• Manage Transcripts
• Assist with Late Registration
• Process Grade Changes
www.purdue.edu/registrar
Stewart Center, Suite 176
765-494-8581

- Manage Transcripts
- Assist with Late Registration
- Process Grade Changes
Bursar

www.purdue.edu/bursar
Stewart Center, Room 194
765-494-7570

• Pay fees
 (http://mypurdue.purdue.edu)
• Applies Financial Aid to Student Accounts
• Administers Deferred Fee Billing Plans
Responsible Conduct of Research (RCR) Training

• Every graduate student in the School of Nuclear Engineering is required to complete the on-line Collaborative Institutional Training Initiative’s (CITI) Responsible Conduct of Research (RCR) training program within 60 days of starting a graduate program and every five (5) years thereafter.

• Details on the CITI training can be found at: https://about.citiprogram.org/en/series/responsible-conduct-of-research-rcr/.

• Each graduate student must submit a certificate of completion for the CITI training to the Student Services Office by the last day of classes in their first semester in order to receive a grade of “Satisfactory” for the seminar course. The certificate of completion will be retained in the student’s file.
Graduate Staff Employment

• Governed by
 Graduate Staff Employment Manual
 Updated: January 19, 2023

FERPA Certification

• Family Education Rights and Privacy Act
• If you are a grader and/or a TA at any point, you MUST be FERPA certified
• http://www.eventreg.purdue.edu/webcert
• Permission to Transmit Information Form www.purdue.edu/registrar
• 765-494-8219
ORAL ENGLISH PROFIENCY TEST (OEPT)

• Before being appointed to a teaching assistant position, a student must be certified by one of the accepted methods (Oral English Proficiency Test or performance in ENGL 62000)

• Students should work with Student Service Office (nuclss@purdue.edu) to register and prepare for the OEPT and, if necessary, enroll in ENGL 62000.

• ENGL 62000 is an English as a second language course in oral communication exclusively for non-native, English-speaking TA's.

• The OPET is a computer-based test used by the OEPP to screen prospective TAs for English language proficiency. While taking the test, candidates respond to a variety of questions, present information and speak extemporaneously on a range of topics. The responses are recorded and evaluated by at least two trained raters.

• A score of 50 or higher is required for certification.
OEPT: Certification Methods

<table>
<thead>
<tr>
<th>Test</th>
<th>Minimum Scores Accepted for Oral English Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral English Proficiency Test</td>
<td>50</td>
</tr>
<tr>
<td>TOEFL iBT (speaking sub-score)</td>
<td>27</td>
</tr>
<tr>
<td>IELTS (speaking band score)</td>
<td>8.0</td>
</tr>
<tr>
<td>PTE (speaking sub-score)</td>
<td>76</td>
</tr>
<tr>
<td>TOEFL (computer or paper based test)</td>
<td>Not Accepted for Oral English certification</td>
</tr>
<tr>
<td>Test of Written English</td>
<td>Not Accepted for Oral English certification</td>
</tr>
<tr>
<td>SPEAK (from other institutions)</td>
<td>Not Accepted for Oral English certification</td>
</tr>
</tbody>
</table>
REGISTERING for OEPT

If your major professor asks that you TA for a course or be a grader, and you are not automatically certified from your TOEFL or IELTS scores, please:

- Visit the OEPP website (www.purdue.edu/oepp)
- Find 2 exam time periods that work for you
- Email Student Service Office (nuclss@purdue.edu) with the exam dates
- Take the practice exam
REQUIREMENTS for the PROGRAM

Graduate Manual, Plan of Study and Registration
NE Graduate Manual

July 2023 Edition

• Contains supplementary regulations and procedures that are specific to the School of Nuclear Engineering.

• It is not intended to replace information, regulations, or procedures contained in the Graduate School's "Policies and Procedures Manual for Administering Graduate Student Programs" or other University or Graduate School publications.

• In the event of conflict, the Graduate School and/or University regulations shall prevail over School policies.
CHOOSING an ADVISOR (and Committee)

• A person who can guide your research
• Usually the person providing funding
• Often determined before you arrive – if not, conduct a careful search
• Work with your advisor to choose your committee
• For additional information or questions – Interim Grad Chair (Prof. Tsoukalas Email/meet/ appointment)
• If there is a certain faculty member you want to meet with, e-mail them to make appointment
PLAN of STUDY:
Master’s Students and PhD Students

Directions are in your supplied material for how to complete the Plan of Study

- Purdue University Graduate School
 www.purdue.edu/GradSchool

- NE Graduate Manual July 2023

https://engineering.purdue.edu/NE/for you/graduate/NE%20Graduate%20Manual%20Fall%202020
CORE CURRICULUM - Master’s Students

Nuclear Engineering Graduate Manual

- 5 Core Courses (3 credits each): NUCL 501 (Intro), NUCL 504 (Radiation), NUCL 510 (Reactor Physics), NUCL 520 (Reactor Materials) and NUCL 551 (Thermal Hydraulics)
- 2 additional courses (3 credits each) of Math or Computer Science or other approved computational course
- Students who have not received a Bachelor of Science in Nuclear Engineering at Purdue MUST take NUCL 501
- Student who did not get an Undergraduate BSNE from Purdue MUST take NUCL 504
- Total 30 Credits hours are required
 - Thesis Based: 24 course credit hours (500 or 600 level) + 6 credit hours research
 - Course Based (non-thesis): 30 total course credit hours
CORE CURRICULUM - PhD Students

Nuclear Engineering Graduate Manual

- Core Courses: NUCL 501 (Intro), NUCL 504 (Radiation), NUCL 510 (Reactor Physics), NUCL 520 (Reactor Materials) and NUCL 551 (Thermal Hydraulics)

- 2 additional courses (3 credits each) of Math or Computer Science or other approved computational course

- Students who have not received a Bachelor of Science in Nuclear Engineering at Purdue MUST take NUCL 501

- Student who did not get an Undergraduate BSNE from Purdue MUST take NUCL 504

- 90 total credit hours are required to graduate
 - 48 credits hours of graduate coursework (500 and 600 level courses)
 - Minimum 3 courses 600 level
 - 42 credits hours of research
REGISTRATION FORM 23 (Schedule Revision Request)

1. PUID
2. Name
3. Term (Fall 2023)
4. College (College of Engineering or CoE)
5. Program (Nuclear Engineering or NE)
6. Classification (Graduate Student or GR)
7. Add (A); Drop (D); Modify (M)
8. CRN (Course Request Number / 5 digit number)
9. Subject (NUCL)
10. Course Number
11. Credits
12. Faculty Advisor Signature
13. Student Signature

- Complete Form 23 found in MyPurdue
- Submit the Form 23 to Nuclear Grad student service office: nuclss@purdue.edu
- Once you are registered, you will receive an email to review your registration
Fall 2023 REGISTRATION CALENDAR
August 21, 2023 – First Day of Class

Calendar for course add or modify, and drop
https://www.purdue.edu/registrar/calendars/

TO ADD or MODIFY or CHANGE A GRADE MODE for a COURSE

<table>
<thead>
<tr>
<th>16 Weeks</th>
<th>1st 8 Weeks</th>
<th>2nd 8 Weeks</th>
<th>AUTHORIZATIONS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 21 – Aug 25 Week 1</td>
<td>Aug 21 – Aug 22</td>
<td>Oct 18 – Oct 19</td>
<td>(COURSE SPACE AVAILABILITY REQUIRED) Students may add courses via Scheduling Assistant</td>
</tr>
<tr>
<td>Aug 26 – Sep 18 Week 2 - 4</td>
<td>Aug 23 – Sep 1</td>
<td>Oct 20 – Oct 31</td>
<td>Advisor and Instructor Submit request via the Scheduling Assistant</td>
</tr>
<tr>
<td>Sep 1</td>
<td>Aug 25</td>
<td>Oct 24</td>
<td>Last day to audit a course, submit change of grade mode to Audit after officially enrolled</td>
</tr>
<tr>
<td>Sep 19 – Oct 24 Week 5 - 9</td>
<td>Sep 2 – Sep 20</td>
<td>Nov 1 – Nov 17</td>
<td>Advisor, Instructor, and Head of Department in which the course is listed. Submit via the Scheduling Assistant</td>
</tr>
</tbody>
</table>

TO DROP A COURSE

<table>
<thead>
<tr>
<th>16 Weeks</th>
<th>1st 8 Weeks</th>
<th>2nd 8 Weeks</th>
<th>AUTHORIZATIONS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 21 – Sep 1 Weeks 1 - 2</td>
<td>Aug 21 – Aug 25</td>
<td>Oct 18 – Oct 24</td>
<td>No authorizations required (Course not recorded) Students may drop courses via Scheduling Assistant.</td>
</tr>
<tr>
<td>Sep 2 – Sep 18 Weeks 3 - 4</td>
<td>Aug 26 – Sep 1</td>
<td>Oct 25 – Oct 31</td>
<td>Advisor (Course recorded with a grade of “W”) Submit request via Scheduling Assistant</td>
</tr>
<tr>
<td>Sep 19 – Oct 24 Weeks 5 - 9</td>
<td>Sep 2 – Sep 20</td>
<td>Nov 1 – Nov 17</td>
<td>Advisor. Instructor (Instructor shall indicate whether passing or failing.) Grades of “W”, “WF”, or “WN” will be recorded. Students with a semester classification of 1 or 2 do not require response from instructor; grades will be “W”. Submit via Scheduling Assistant.</td>
</tr>
</tbody>
</table>
Questions
Additional Presentations are available at https://engineering.purdue.edu/NE/foryou/graduate
Information and Library Search Skills

Ethics, Responsible Conduct of Research and iThenticate Program

Academic Integrity

Business office-Student Payroll

Student Organizations

- Women in Engineering Programs (WIEP)
- Women in Nuclear Engineering
- Nuclear Engineering Graduate Organization
- American Nuclear Society
- Alpha Nu Sigma
- Purdue Graduate Student Government (PGSG)
https://engineering.purdue.edu/NE/foryou/graduate

- **College of Engineering Information**
 - Required: Graduate Student Responsible Conduct of Research (RCR) (PDF)
 - Introduction to Funding (PDF)
 - Apply for Fellowships & Scholarships (PDF)
 - Mentoring: For Graduate School and Beyond (PDF)
 - Engineering Academic Career Club (EACC) (Image)
 - Graduate Mentoring Program from the Women in Engineering Program (Video)
- **Presentation Slide Downloads**
 - New Graduate Student Orientation (PDF)
 - Research Integrity Office (PDF)
 - Academic Integrity & You: Graduate Edition (PDF)
 - Orientation to the Purdue Libraries & School of Information Studies (PDF)
 - ECN (Engineering Computer Network) (PDF)
- **Videos:** Research Integrity Office and NEGO
Website: www.engr.purdue.edu/grad
YouTube: https://www.youtube.com/c/PurdueEngineeringGraduatePrograms
Twitter: @PurdueGradEngr

• Counseling and Psychological Services (CAPS) Liaisons to CoE
 https://engineering.purdue.edu/Engr/Bloom/CAPS-Liaisons-Engineering

• Graduate Student Center
 Lounge, kitchen, study rooms, multi-purpose room, and more!

• The Co-Rec
 • 2 swimming pools and diving well
 • Climbing & bouldering wall
 • 2 indoor tracks, courts, martial arts, fitness classes, cooking classes
 • Intramural & club sports
Purdue College of Engineering Wellness

In addition to the rich Purdue wellness programs already available to you, Purdue College of Engineering has partnered with TaskHuman, a mobile app that helps you achieve your personal wellness goals!

https://engineering.purdue.edu/Engr/Bloom/TaskHuman
New Changes to Health Insurance Benefits This Semester

- **United Healthcare** is the new benefits provider for graduate staff.
 - **Graduate Staff Enrollment**
 - **Note:** During this transition period for the first 12-months of coverage, UHCSR will pay out of network claims the same as in-network (if a claim processes out-of-network, then it will be reprocessed as in-network through the appeal process during this period).
 - If the out-of-network provider is identified before the claim processes, UHCSR will flag that provider to process as in-network and process the claim accordingly.
 - Here is a list of mental health providers
 - For questions or concerns about UHCSR, please contact hr@purdue.edu

- We also encourage you to use the Engineering Graduate Student Anonymous Reporting Tool so that the Office of Graduate Education can continue to support you!
Helpful Resources to Know About

- **Did You Know?** – *The Graduate School’s brand-new one-stop location for a multitude of resources!*

- **Engineering Computer Network (ECN)** – Knowledge Base

- **Information Technology at Purdue (ITaP)** – GoldAnswers

- **International Students and Scholars (ISS)**

- **Oral English Proficiency Program (OEPP)**

- **Cultural Centers, Networks, & Resources**
 - Graduate Student-Specific Organizations

- **ACE Campus Food Pantry**

- **CityBus Website & App**

- **Purdue Recreation & Wellness (RecWell)**

- **Not sure where to turn with an issue?** Reach out to The Graduate School Ombuds Services!
THANK YOU