Current Research: Increasing the RAP Content

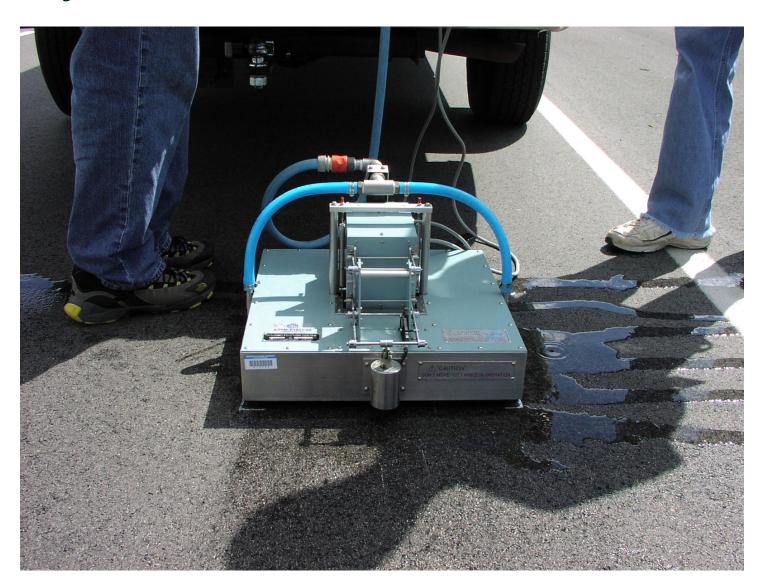
Rebecca McDaniel North Central Superpave Center

RAP ETG March 5, 2008

Current RAP Research - NCSC

- Evaluation of RAP for Surface Mixtures
 - Determine if INDOT can allow the use of RAP in mainline surface courses for high volume roadways
 - Either develop method to ensure RAP agg meets certain properties and provides adequate friction
 - Or determine threshold level of RAP that will not have negative impact on friction
 - INDOT funded

RAP for Surfaces


- Evaluate different blends of
 - □ RAP -- lab fabricated "worst case" RAP
 - Mix Types SMA and HMA
 - □ NMAS 9.5mm
 - □ Agg Types slag and dolomite
- Fabricate slabs, polish in lab and test texture and friction
- Test field friction of existing RAP surfaces
- Verify acceptable friction and mechanical properties with 6-8 sources of real RAP

Slab Polisher

Dynamic Friction Tester

Circular Texture Meter

Current RAP Research - NCSC

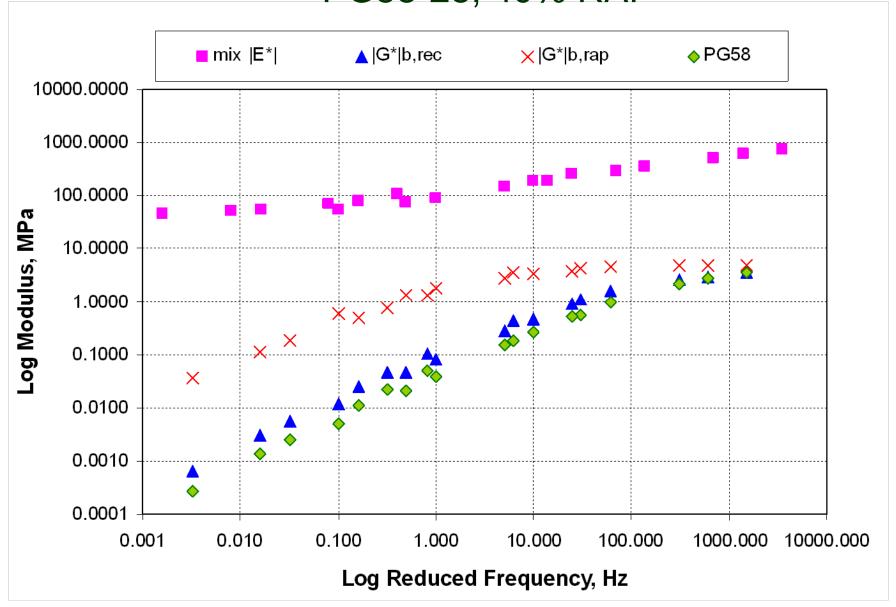
- Low-Temperature Performance Properties of Hot Mix Asphalt Containing RAP
 - □ 2006 -- Evaluated plant-produced mixes with up to 40% RAP and two virgin binder grades
 - Originally proposed to focus on effects of RAP on low temperature properties
 - □2007 -- Expanded 4 more contractors/plants
 - □ FHWA funded

What We Did - 2006

- Milestone Contractors LP produced six mixes through one plant over two days.
- Heritage Research Group and NCSC tested RAP, virgin and mixture properties
 - □ Binder properties PG binder tests
 - Mix properties Indirect Tensile Strength, Dynamic Modulus, Shear Modulus

Experimental Design

	Reclaimed Asphalt Pavement			
Binder Grade	0%	15%	25%	40%
PG 58-28			X	X
PG 64-22	X	X	X	X


Tests

- Binder tests look at blending in lab and plant
- Mixture tests
 - □ Low temperature
 - □ Dynamic Modulus
 - □ Fatigue (FHWA)
- Extraction Technique compare Abson to T319
- Dynamic Modulus
- Comparison of Abson vs. T319

Critical Cracking Temperatures

Mix	RAP Content	Tc (°C)	
A – PG64-22	0	-28.9	
B – PG64-22	15	-23.3	
C – PG64-22	25	-25.6	
D – PG64-22	40	-22.8	
E – PG58-28	25	-27.2	
F – PG58-28	40	-23.9	

PG58-28, 40% RAP

What does this mean?

- For these materials and this plant, the RAP mixes were not as stiff as expected.
- The binder did not stiffen linearly with increasing RAP content.
- In this case, dropping the virgin grade to PG58-28 for 25% RAP was not necessary.

Not Conclusive

- Only one plant, one RAP source, one set of virgin materials
- E&B, J.H. Rudolph, Rieth-Riley, Phend & Brown repeated this in their plants
 - □Similar testing is underway at NCSC now on these mixes
- Other evidence suggests blending does happen. Why or why not?