Pavement Design Overview

Rebecca S. McDaniel March 10, 2011

Plan

Review types of pavements

- Features
- Advantages and Disadvantages
- Typical Distresses
- Common design techniques/considerations
 - AASHTO
 - Mechanistic-Empirical
- Resources

Basic Pavement Types

- Unbound
- Flexible
- Rigid
- Composite

Primary difference is in how loads are distributed to subgrade.

Typical Pavement Layers

- Wearing course or surface \
- Base course
- Subbase
- Subgrade
 - Compacted or Stabilized
 - Natural

Subgrade

- Natural Soil
- Compacted Soil
- Stabilized
 - Lime
 - Cement
 - Fly Ash

Subbase/Base Courses

May be used for:

- Drainage
- Construction platform
- Controlling pumping
- Controlling frost action
- Controlling shrink and swell of subgrade

Surface Courses

- Safety
 - Traffic Loads
 - Environmental Factors
 - Temperature extremes
 - Moisture
 - Other Considerations
 - Noise
 - Smoothness
 - Economics Initial and Life Cycle
 - Traffic Disruptions

Flexible Pavements

- Made up of multiple, fairly thin layers
- Each layer distributes load over larger area of layer below
- Pavement deflects under load
- Typically asphalt
- Easily and routinely recycled
- Typical lives 15-20 years (to first rehab)

Flexible Pavement

- Pavement layers bend
- Each layer spreads load to next layer
- Loads over a smaller area of subgrade

Typical Applications - Flexible Pavement

- Traffic lanes (wide range of traffic levels)
- Auxiliary lanes
- Ramps
- Parking areas
- Frontage roads
- Shoulders

Advantages of Flexible Pavement

- Adjusts to limited differential settlement
- Easily, quickly constructed and repaired
- Additional thickness can be added
- Quieter and smoother (generally)
- More "forgiving"

Disadvantages of Flexible Pavement

- Properties may change over time as pavement ages
- Generally shorter service life before first rehabilitation
- May experience moisture problems

Surface Course Distress

- Rutting mainly controlled by choice of materials and design of surface mixes
- Surfaces also must be resistant to cracking

Foundation Distresses

- Poor subgrade support can cause rutting.
 - Drainage
 - Frost penetration?
 - Stabilization

Perpetual Pavement

- Asphalt pavement designed to last over 50 years without major structural rehabilitation needing only periodic surface renewal.
 - *Full-depth pavement* constructed on subgrade
 - Deep-strength pavement constructed on thin granular base course
 - AKA extended-life pavement or long-life pavement

Perpetual Pavement Concept

- Asphalt pavements with high enough strength will not exhibit structural failures.
- Distresses will initiate at the surface, typically in the form of rutting or cracking.
- Surface distresses can be removed/ repaired relatively easily,
 - Before causing structural damage,
 - Leaving most of pavement in place, performing well.

Perpetual Pavement Features

- Each layer designed to resist specific distresses
- Base designed to resist fatigue and moisture damage, to be durable
- Intermediate/binder designed for durability and stability (rut resistance)
- Surface designed to resist surface initiated distresses (top-down cracking, rutting, other)

Surface Renewal

- Repair surface distresses before they become structural
 - Mill and fill
 - Thin overlay
- Quick
- Cost effective

Rigid Pavements

- Generally stiffer may have reinforcing steel
- Distributes loads over relatively large area of subgrade
- Portland cement concrete
- Can be recycled, but less common
- Service lives 20-40 years (to first major rehab)

Rigid Pavement

- Stiffer pavement layer
- Little bending
- Distributes load over larger area of subgrade

Typical Applications – Rigid Pavement

- High volume traffic lanes
- Freeway to freeway connections
- Exit ramps with heavy traffic

Advantages of Rigid Pavement

- Good durability
- Long service life
- Minor variations in subgrade strength have little effect
- Withstand repeated flooding and subsurface water without deterioration (as long as base and/or subgrade are resistant to moisture damage)

Disadvantages of Rigid Pavements

- Distresses may be harder/more expensive to repair
- May polish (lose frictional properties) over time
- Needs even subgrade support
- Generally (but not always) considered more expensive to construct

Concrete Slab Temperature and Moisture Gradients

Choosing a Pavement Type

- Many states have guidelines or policies
- Driven by engineering and economic considerations (preferred)
- Sometimes influenced by other considerations

Pavement Design Considerations

- Pavement Performance
- Traffic
- Subgrade Soil Conditions
- Availability and Cost of Materials
- Environment
- Drainage
- Reliability
- Life Cycle Costs
- Shoulder Design

Design Methodologies

- Experience
- Empirical
 - Statistical models from road tests
- Mechanistic-empirical
 - Calculation of pavement responses, i.e.,
 - stresses, strains, deformations
 - Empirical pavement performance models
- Mechanistic

AASHO Road Test

AASHO Road Test Achievements

- Serviceability concept PSI
- Traffic damage factors ESALs
- Structural number concept SN
- Empirical Process
- Simplified Pavement Design
- Used for about 50 years

Serviceability

- Ability of a pavement to serve the traffic for which it was designed
- User rating of performance plus measured physical features of the pavement (such as rut depth, cracking, etc.)
- When serviceability reaches a certain level, rehab or maintenance is needed

AASHO Serviceability

Time (Applications)

Structural Number Concept

- Determine SN needed to carry the traffic over the soil conditions in the region
- Empirical layer coefficients (a_i) reflect how that material will contribute to the structural strength of the pavement
- Determine layer thicknesses (D_i) to achieve required SN

$SN = a_1D_1 + a_2D_2 + a_3D_3 \dots$

Basic AASHTO Flexible Pavement Design Method

- Determine the desired terminal serviceability, pt
- Convert traffic volumes to number of equivalent 18-kip single axle loads (ESAL)
- Determine the structural number, SN
- Determine the layer coefficients, a_i
- Solve layer thickness equations for individual layer thickness

Basic AASHTO Rigid Pavement Design Method

- Select terminal serviceability
- Determine number of ESALs
- Determine the modulus of subgrade reaction
- Determine the slab thickness

Limitations of AASHO Road Test

- One climate Ottawa, Illinois
 Limited Span two years
- Limited Traffic generally < 2 million
- 1950's vehicles
- 1950's materials and construction
- Only new construction

What Is Wrong with Present System?

Current design traffic is far beyond road

PAVEMENT THICKNESS

What Would be Better?

Fundamental Mechanistic - Empirical Principles

Development Continuum

M-E Design

- Considers applied stresses and resulting strains
- Uses fundamental engineering properties that can be measured
- Computes reactions to stresses and strains and predicts distresses
- Feasible with improved computing capabilities

MEPDG

- Mechanistic-Empirical Pavement Design Guide
- Allow design of:
 - -New construction (flexible and rigid)
 - Composite pavement designs
 - Rehabilitation and overlays
- Evaluates effects of specification changes
 - "what ifs"

M-E Pavement Design Process

Basic Concept Behind MEPDG

- Determine acceptable levels of distress
- Estimate traffic loading
- Determine material properties and climatic effects on those materials
- Select trial structure
- Calculate distresses in that structure based on response to traffic and climate
- Are distresses acceptable?

Hierarchical Levels

Level	Source	Usage
Three	Defaults	Routine projects
Two	Correlations	Routine significant projects
One	Project specific data	Research, forensics and high level projects

Numerous Input Parameters

- Materials properties change with time and environment
- Calculates incremental damage for each load
- Damage is dependent upon stress-strain and material properties at time of loading

Pavement Design Variables

Predicted Distresses - Flexible

Fatigue Cracking

Thermal Cracking

Longitudinal Cracking

IRI

Graph Example Output – Rutting

Permanent Deformation: Total Rutting in Pavement Layers (inch)

Rigid Pavement Performance

Punchout

Transverse Cracking

Faulting

IRI

Incremental Damage Concept – Accumulation for PCC Pavements

- Design life divided into monthly increments
- Specific material properties, traffic and climatic data used for each increment

Damage Increments over Time

JPCP Design Features Inputs

- Joint Details
 - Joint spacing
 - Sealant type
 - Dowel diameter and spacing
- Edge Support
 - Shoulder type and LTE
 - Widened slab

- Base properties
 - Base type
 - Interface type, i.e. bonded or unbonded
 - Erodibility

Slab Thickness - JPCP

MEPDG Capabilities

- Wide range of pavement structures
 - New
 - Rehabilitated
 - Flexible, rigid, composite
- Explicit treatment of major factors
 - Traffic Over-weight trucks
 - Climate Site specific and over time
 - Materials New and different
 - Support Foundation and existing pavement

MEPDG Capabilities

- Models to predict change in distress over time
- User establishes acceptance criteria
 Distresses and smoothness
 - Procedure evaluates the trial design to determine if it meets the desired performance criteria at individually set reliability levels

Pavement Design Resources

- MEPDG www.trb.org/mepdg/
- AASHTO 1993 Pavement Design Guide

 Perpetual Pavement Design Software – PerRoad <u>http://asphaltroads.org/PerpetualPavement</u> Rebecca S. McDaniel Technical Director North Central Superpave Center 765/463-2317 ext. 226 rsmcdani@purdue.edu https://engineering.purdue.edu/NCSC/