Establishing a Baseline of Knowledge (thru 2005) by Reviewing AI IS-220, “Polyphosphoric Acid Modification of Asphalt”

Mark Buncher, Ph.D., P.E.
Director of Engineering
Outline of IS – 220
Published in July 2005

• Introduction
• AI’s Position
• What is PPA
• Review of History and Literature
• PPA Modification in Asphalt
• FAQs
• Recommended Practices and Testing
Purpose: Clarify issues regarding PPA modification and to help agencies make informed decisions

Not a promotional piece

Developed through AI’s Technical Advisory Committee and Affiliate Committee by member reps
AI’s Position on Modification and PPA

• Supports responsible modification of asphalt for improved performance and life cycle costs
AI’s Position on Modification and PPA

• Supports responsible modification of asphalt for improved performance and life cycle costs

• Does not endorse any specific or proprietary form of modification
AI’s Position on Modification and PPA

- Supports responsible modification of asphalt for improved performance and life cycle costs
- Does not endorse any specific or proprietary form of modification
- PPA can improve physical properties of asphalt when used correctly and in appropriate amount
AI’s Position on Modification and PPA

- Supports responsible modification of asphalt for improved performance and life cycle costs
- Does not endorse any specific or proprietary form of modification
- PPA can improve physical properties of asphalt when used correctly and in appropriate amount
- Inappropriate use of PPA can result in problems
Al’s Position on Modification and PPA

• Supports responsible modification of asphalt for improved performance and life cycle costs
• Does not endorse any specific or proprietary form of modification
• PPA can improve physical properties of asphalt when used correctly and in appropriate amount
• Inappropriate use of PPA can result in problems
• Continue developing performance-related specs
AI’s Position on Modification and PPA

• Supports responsible modification of asphalt for improved performance and life cycle costs
• Does not endorse any specific or proprietary form of modification
• PPA can improve physical properties of asphalt when used correctly and in appropriate amount
• Inappropriate use of PPA can result in problems
• Continue developing performance-related specs
• Test modified binder after all additions
• Another name for PPA besides polyphosphoric acid???
• Another name for PPA besides polyphosphoric acid???
• Answer: purified phosphoric acid, which is an orthophosphoric acid and not recommended for asphalt modification
What is PPA?

- NOT purified phosphoric acid or orthophosphoric acid
- Is a liquid mineral polymer
What is PPA?

• Used industrially for it’s dehydrating and catalytic properties

• Major Applications
 – Surfactant production
 – Water treatment
 – Pharmaceutical synthesis
 – Pigment production
 – Flame proofing
 – Metal finishing
 – Asphalt modification
What is PPA?

- Major Differences Between PPA and Orthophosphoric Acid
What is PPA?

• Major Differences Between PPA and Orthophosphoric Acid
 – $H_{n+2}P_nO_{3n+1}$ versus H_3PO_4
 • Different CAS numbers (unique chemical identifier)
What is PPA?

• Major Differences Between PPA and Orthophosphoric Acid
 – $H_{n+2}P_nO_{3n+1}$ versus H_3PO_4
 • Different CAS numbers (unique chemical identifier)
 – PPA has greater density and higher viscosity
What is PPA?

- Major Differences Between PPA and Orthophosphoric Acid
 - $H_{n+2}P_nO_{3n+1}$ versus H_3PO_4
 - Different CAS numbers (unique chemical identifier)
 - PPA has greater density and higher viscosity
 - PPA has no free water while Ortho Acid has 15% water
 - Total miscibility (mixing ability) with asphalt
 - Significantly lower corrosivity for steel and stainless steel
• Seven Patents found on PPA Modification of Asphalt
 – 1973
 • Chemically modified asphalt
 – 1999 - 2002 (Five Patents)
 • Polymer modified asphalt
 – 2004
 • Crumb rubber modified asphalt
Review of History and Literature (through July, 2005)

- Eight published papers between 2001 and 2005 synopsized in IS-220
- Presentations during same timeframe are also summarized
- Conclusions that follow are based on these
PPA Modification in Asphalt

• PPA can be effective and economical tool for chemical modification, used alone or in conjunction with a polymer
• PPA can improve high-temp PG grade, and with some asphalt sources may slightly improve low-temp PG grade
• Does not oxidize asphalt or lower m-value
• Two main chemical reactions
 – Phosphate ester formation (irreversible reaction)
 – Acid-basic neutralization (partially reversible)
PPA Modification in Asphalt

- When used with polymer, PPA provides flexibility in reaching specified DSR and ER criteria while limiting viscosity increase @ 275°F
- For acidic aggregates such as granite, PPA can enhance moisture resistance of mix to where an anti-strip may not be necessary
- When an antistrip additive is used, a neutralization reaction may occur (depends of nature of asphalt, aggregate and antistrip). If so, then a partial loss of binder stiffness will result without loss of adhesion properties
Q: Does PPA work equally well in all asphalts?
A: No. Interactions dependent on asphalt chemistry. Formulator responsibility.
Frequently Asked Questions

Q: Does PPA work equally well in all asphalts?
A: No. Interactions dependent on asphalt chemistry. Formulator responsibility.

Q: Is PPA modified asphalt an oxidized asphalt?
A: No. Relaxation properties from BBR do not deteriorate.
Frequently Asked Questions

Q: Does PPA work equally well in all asphalts?
A: No. Interactions dependent on asphalt chemistry. Formulator responsibility.

Q: Is PPA modified asphalt an oxidized asphalt?
A: No. Relaxation properties from BBR do not deteriorate.

Q: Are there antistrips that will interfere with PPA modification?
A: Yes. Under certain conditions, PPA may react with certain antistrips leading to partial decrease of high-temp PG improvement from PPA modification. Antistrip function is not inhibited. Correct formulation necessary.
Q: Is there a type of antistrip that can be used with PPA modified binder that will not inhibit gains from PPA?
A: Yes. Phosphate esters don’t react with PPA. They are effective antistrips in both neat and PPA modified binders.
Q: Is there a type of antistrip that can be used with PPA modified binder that will not inhibit gains from PPA?
A: Yes. Phosphate esters don’t react with PPA. They are effective antistrips in both neat and PPA modified binders.

Q: Does PPA incur premature aging or brittleness?
A: No. No evidence of accelerated aging or worsened low-temp properties from modification with PPA.
Q: Is there a type of antistrip that can be used with PPA modified binder that will not inhibit gains from PPA?
A: Yes. Phosphate esters don’t react with PPA. They are effective antistrips in both neat and PPA modified binders.

Q: Does PPA incur premature aging or brittleness?
A: No. No evidence of accelerated aging or worsened low-temp properties from modification with PPA.

Q: Are there storage or corrosive issues with PPA binders?
A: No. PPA totally miscible in asphalt and should not separate. Also, no difference in corrosivity between neat asphalts versus those with 1-2% PPA. Raw PPA is corrosive however.
Recommended Practices by Manufacturers

- Asphalt manufacturers using PPA must do so responsibly:
 - Careful formulation to ensure appropriate dosage based on type of asphalt
 - Ensure compatibility with antistrip additives
 - Good communication with contractor regarding potential use of amine-based antistrip
 - PPA as a raw material is corrosive, so follow MSDS info.
Recommended Testing by Agencies

• Specifiers and agencies can help ensure responsible use of PPA by conducting:
 – PG Plus binder test (i.e. ER) to ensure presence of polymer when one is required
 – DSR testing to check for compatibility of PPA with amine-based antistrips before and after antistrip is added.
 – Mix performance tests to evaluate moisture susceptibility (T-283, wheel tracking under water) with all additives included.
Final Thought

• In the next day and a half, it will be interesting to observe:
 – How far we have come in the last 4 years in furthering our knowledge of PPA modification of asphalt
 – How many of the issues and questions on this topic that existed 4 years ago are still present today
Current AI Members, April 2009
Questions?

Reminder: I’m not a chemist