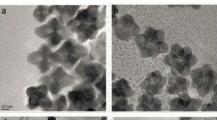
Reduced Electron-Phonon Coupling and Enhanced Charge Transfer in Solar Cell Nanomaterials

Students: Liangliang Chen, Kelly Rickey, and Dr. Venkataprasad Bhat

Synthesize high-crystallinity monodisperse semiconductor nanocrystals of various shapes

- •High crystallinity is essential in enhancing charge transportation in nanocrystals.
- •Identification of shape influence on the NC properties is essential in choosing best materials for solar applications.

Study phonon-assisted hot electron relaxation dynamics


• Understanding energy relaxation mechanisms is essential in reducing energy loss and improving energy conversion efficiency in solar cell devices.

Synthesis

- Pyrolysis of organo-metallic compounds was used.
- •Modifications were made in parameters, like surfactant, solvent, precursor, temperature.

• Time-domain non-adiabatic molecular dynamics simulation was realized by implementing the fewest switching surface hopping (FSSH) technique in the time-domain Kohn-Sham (TDKS) theory.

KEY RESULTS AND FINDINGS:

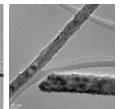
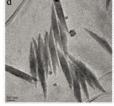
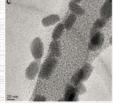
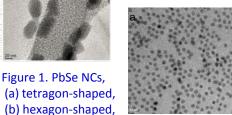
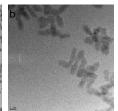






Figure 2. CdTe NWs.

(c) diamond-shaped, Figure 3. CdSe NCs. (a) spherical,

(d) nanorod,

(e) nanowire.

(b) nanowire.

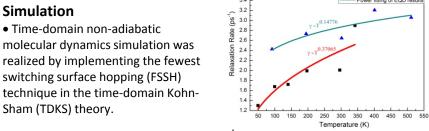
Figure 4. Hot electron relaxation rate as a function of temperature for the CdSe QD and EQD.

The relaxation of hot electrons proceeds faster and shows stronger temperature dependence in the EQD than in the QD.

Impact

Various shapes of semiconductor NCs were produced using this simple one-step synthesis method.

Sponsor: NSF


• Influence of shape and temperature on the hot electron relaxation dynamics were understood.

Applications

- Rational selection materials for semiconductor NC-based solar cell device.
- More experimental inputs for the study of shape influences on the properties.

Selected Publications

- H. Bao, B.F. Habenicht, O.V. Prezhdo, and X.L. Ruan, Phys. Rev. B 79, 235306-1-7, 2009.
- L. Chen, H. Bao, T. Tan, O. Prezhdo, and X. Ruan, J. Phys. Chem. C 115, 11400, 2011.
- W.Z. Wu, Z.R. Zheng, and X.L. Ruan, Nanotechnology 21, 265704, 2010.

