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A B S T R A C T   

Discovering exceptions has been a major route for advancing sciences but a challenging and risky process. 
Machine learning has shown effectiveness in high throughput search of materials and nanostructures, but using it 
to discover exceptions has been out of the norm. Here we demonstrate the use of genetic algorithm to discover 
unexpected thermal conductivity enhancement in disordered nanoporous graphene as compared to periodic 
nanoporous graphene. Recent studies have concluded that random pores in nanoporous graphene lead to reduced 
thermal conductivity than periodic pores, due to phonon Anderson localization. This work, however, aims to 
challenge this accepted knowledge by searching for exceptions. A manual search was first shown to be expensive 
and unsuccessful. An efficient “two-step” search process coupled with genetic algorithm was then designed, and 
unexpected thermal conductivity enhancement was successfully discovered in certain structures with random 
pores, at a fraction of the computational cost of the manual search. Through structural analysis, we proposed that 
such unusual enhancement is due to the effect of shape factor and channel factor dominating over that of the 
phonon localization. Our work not only provides insights in thermal transport in disordered materials but also 
demonstrates the effectiveness of machine learning to discover small probability events and the intriguing 
physics behind.   

1. Introduction 

Discovering exceptions is a major route of advancing science. How-
ever, it is also a well-known highly risky process, since it usually in-
volves a well-thought hypothesis, numerous trials and errors, but most 
often still ends with no success. Recently, on the other hand, the large 
amount of data generated by experiments and simulations have pro-
moted the emergence of the “fourth paradigm”— (big) data science [1]. 
Studies have shown that the advanced data-driven paradigm can 
reproduce the existing physical laws based on data analysis only, for 
example, the heat diffusion equation and non-linear Navier-Stokes 
equations [2]. However, using machine learning to facilitate discoveries 
of exceptions beyond accepted knowledge is out of the norm. Here we 
consider thermal transport in disordered systems as a model problem. 

Manipulating thermal transport in nanostructured materials [3–15] 
has attracted extensive research interest in thermal transport commu-
nity for their promising applications in thermoelectric energy conver-
sion [4,5,10,13], thermal insulation [3,14,15] and efficient heat 
dissipation [6,8,12]. Periodic nanostructures, including 1D superlattice 

[16–23] and 2D/3D phononic crystals [24–30], have been widely 
investigated, in which classical size effect [31,32] and wave interference 
[33,34] are two major mechanisms for modulating their thermal 
transport properties. Accordingly, disordered nanostructures also 
attracted significant research interest. It is found that, when there is no 
phonon coherence, the disorder has a negligible effect on the thermal 
conductivity. For example, experiments have shown that, at room 
temperature, the disordered and ordered nanoporous silicon membranes 
have the same value of thermal conductivity [35,36]. However, when 
phonon coherence occurs, a certain degree of disorder was found to 
effectively localize phonon propagation and thus reduce the thermal 
conductivity owing to the phonon localization [16,18,20–23,27,28,30, 
37–40]. For example, in 1D superlattice, aperiodic superlattice can 
achieve much lower thermal conductivity than the periodic superlattice 
[16,20,22,23] and even lower than the alloy limit [18,21]. Moreover, 
machine learning has recently been used to minimize the thermal con-
ductivity of large scale 1D aperiodic superlattices and explain the 
physics behind [41]. In the 2D nanoporous graphene, the disorder of 
pore arrangement can reduce the thermal conductivity [27,28], and the 
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amount of reduction can be up to 80% of the periodic counterpart [28]. 
In the 2D nanoporous C3N, the reduction of thermal conductivity by the 
disordered pores was also observed [30]. 

It can be noted that all the results above were obtained by studying a 
limited number of disordered structures, despite the fact that there are 
infinite disordered structures for one system. Whether the limited 
sampled structures are representative enough has never been elucidated. 
Are there any exceptions to the conclusion? If so, is there a systematic 
and efficient way to identify them? In this work, we investigated the 
thermal transport in nanoporous graphene with disordered pore ar-
rangements. In contrast to providing another evidence that disordered 
pores reduce thermal conductivity due to phonon localization, we 
attempted to challenge this well-accepted knowledge by looking for 
exceptions. Not to our surprise, a manual search was extremely expen-
sive but unsuccessful. Therefore, we developed a genetic algorithm 
enabled two-step search process to efficiently handle the huge config-
uration space, and we were able to discover unexpected cases where 
thermal conductivity is enhanced by the disorder. Analyzing these un-
usual cases further allows us to identify two important descriptors for 
the pore arrangement, which are strongly correlated to the thermal 
conductivity. 

2. Results and discussion 

We consider a monolayer nanoporous graphene constructed by 
removing atoms from a rectangular pristine graphene sheet, as shown in 
Fig. 1a and b. The period L0 and porosity are set as 4.6 nm and 25%, 
which makes phonon transport cover the coherent regime and thus fa-
cilitates wave interference. To eliminate the size effect of thermal con-
ductivity for nanoporous graphene, 17 columns and 4 rows of periods 
(pores) are arranged in the x and y direction. Correspondingly, the 
simulation domain has width W ¼ 18.4 nm, length L ¼ 88.2 nm, and 68 
pores in total. In order to obtain the thermal conductivity of the nano-
porous graphene, the standard non-equilibrium molecular dynamics 
(NEMD) simulation (see Appendix) is employed. 

2.1. Manual search 

We first attempted a search for random structures with possibly 
higher thermal conductivities than the periodic structure by randomly 
shifting the pores, as shown in Fig. 1c. For each pore, the shift distance is 

D, which depends on the degree of disorder in the x and y directions. For 
each configuration, the degree of disorder can be quantified by the 
average shift distance Dave over all 68 pores. We generated 21 disordered 
configurations by setting the maximum shift distance in the x and y 
direction. They are categorized into four groups: shift only in x, shift 
only in y, small shift in both x and y, and large shift in both x and y. More 
details can be found in the Supporting Information. For all 21 disordered 
configurations, the porosity, pore size, number, and shape are the same 
as the periodic configuration, while the only difference is the pore 
arrangement. 

NEMD simulations are then performed to compute thermal conduc-
tivities at 300 K. We have tested the statistical uncertainty of NEMD 
simulation and found that it is smaller than 3% (see Supporting Infor-
mation). Due to the small simulation uncertainty, we regarded the result 
of one simulation accurate enough and thus only performed one simu-
lation for one configuration. The thermal conductivities of periodic and 
21 disordered configurations are shown in Fig. 1d, where we can see that 
the thermal conductivity of the periodic configuration is 41.0 W/mK, 
which is close to the result of a similar simulation setup in Hu’s study 
[28]. We note that for all 21 disordered configurations, the thermal 
conductivity values are considerably lower than that of the periodic 
structure. Therefore, through manual search, we did not find any 
disordered configuration with higher thermal conductivity than the 
periodic case. Such a result is consistent with the work by Hu et al., 
where they find disorder will reduce the thermal conductivity due to the 
phonon localization. The highest thermal conductivity of the 21 disor-
dered configurations is 38.6 W/mK, which occurs when we only shift 
pores in x direction. This particular configuration is shown in Fig. 1e. 
One can see that such a configuration is only a small modification of the 
periodic configuration. Overall, we found that with shift only in the x 
direction, the thermal conductivities are about 5%–13% lower than that 
of periodic configuration. In comparison, for the other three groups, the 
thermal conductivities are both within the range of 24–30 W/mK, which 
are about 30%–40% lower than that of periodic configuration. From the 
results, it can be seen that introducing disorder in different directions 
can have different effects on the thermal conductivity. 

The computational cost for our manual search is worth mentioning. 
It cost about 3200 core hours by NEMD simulation of each configuration 
(containing about 47000 atoms). Overall, 67200 core hours were spent 
in the manual search process for the 21 disordered configurations. This 
extremely time-consuming search method makes it difficult to further 

Fig. 1. The approach of generating disor-
dered configurations and NEMD results in 
the manual search. (a) The schematic of 
NEMD simulation domain of nanoporous 
graphene with periodic pore arrangement. 
(b) The atomic configuration of nanoporous 
graphene with three periods in both x and y 
direction. The pores are situated at the cen-
ter of periods with periodicity L0 ¼ 4.6 nm. 
(c) The enlarged figure of one period. The 
disordered porous structure is generated by 
shifting pores (denoted by the red circle) 
from the periodic positions (denoted by the 
blue circle) by a distance D. (d) Thermal 
conductivities of periodic and 21 disordered 
configurations. These configurations are 
categorized into four groups, which are 
distinguished using different colors. For 
example, “Shift in x” represents the config-
urations with pore shift only in x direction. 
“Large shift in x, y” represents the configu-
rations with large pore shift in both x and y 
direction. (e) The schematic of disordered 
configuration with the highest thermal con-
ductivity found in the manual search, which 
only has disorder in the x direction.   
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explore the sampling space. 

2.2. Genetic algorithm enabled search 

We realized that searching for the unlikely high-thermal- 
conductivity configuration by changing the shift of pores could be 
regarded as an optimization problem. The optimization variables are the 
degrees of disorder of pores and optimization target is the thermal 
conductivity. Inspired by the recent successful applications of machine 
learning algorithm [42–48], an efficient two-step search protocol is 
designed with an optimization algorithm. Among various optimization 
algorithms that have been developed, the genetic algorithm [49] (GA) 
has strong global optimization capabilities and convenient imple-
mentation, which have been successfully applied in material science and 
engineering [41,49–54]. Therefore, we chose to use GA for optimization 
in our search process. 

From the perspective of optimization, our system has 136� of 
freedom. Considering the large computational cost of NEMD simulation, 
it is nearly impossible to conduct the optimization process even with the 
GA. To mitigate this problem, we need to further reduce the searching 
space and the computational cost for each sample. To reduce the 
searching space, the optimization is carried out with a reduced-size 
configuration with only 16 pores, as shown in Fig. 2a. Once an 
optimal configuration is found, the corresponding large-size configura-
tion of 4 by 17 pore arrangement can be constructed by replicating the 
small-size configuration along the x direction. To reduce the computa-
tional cost for each configuration, we further choose to perform gray 
phonon BTE simulation to compute the thermal conductivities. 
Although phonon BTE can only consider particle transport characteris-
tics of phonons (exclude wave effect) and the gray model neglect phonon 
modal details, it can still capture other effects of pore arrangement on 
the thermal conductivity41, 42. We identified a positive correlation be-
tween BTE and NEMD simulation results of the same configurations. 
More detailed can be found in Supporting Information. In comparison to 
NEMD, a single BTE simulation only cost 0.08 core hours on a reduced- 

size sample, which is basically negligible. Thus, BTE simulations can 
serve as a pre-screening tool. The details of gray BTE simulation can be 
found in Appendix. Of course, once a promising configuration is ob-
tained with BTE, the case will be checked with NEMD, hence the accu-
racy is not sacrificed. 

Fig. 2b presents the detailed workflow of the two-step search process. 
Starting from the periodic structure, 50 disordered reduced-size con-
figurations are first generated, which are organized as the 1st genera-
tion. BTE simulations are then employed to compute the thermal 
conductivities. Through GA optimization, (iþ1)-th generation are ob-
tained by optimizing the i-th generation based on the computed thermal 
conductivities. After the optimization, the best individual that possesses 
the highest thermal conductivity in i-th generation is maintained in the 
(iþ1)-th generation, which guarantees that the highest thermal con-
ductivity for each generation could monotonically increase from the 1st 
generation. The convergence criterion is that the thermal conductivity of 
the best individual in each generation does not change over 8 genera-
tions [55,56]. If the GA optimization process is not converged, BTE 
simulation will be performed on the (iþ1)-th generation and the same 
procedure will repeat. With converged results, NEMD simulations are 
finally applied to validate the thermal conductivities of corresponding 
large-size optimal configuration. If the NEMD result is not larger than 
the periodic configuration, then the entire search process will start over. 
Since our goal is to find one exception rather than all exceptions, we 
performed optimization on the configurations with disorder only in x or 
y direction rather than both directions. 

Fig. 2c shows all the BTE computed normalized thermal conductivity 
k* during the optimization process, in which the best individuals for 
each generation are shown as solid dots. We find that the best in-
dividuals for optimization in x and y direction increase from the 1st 
generation. Starting from a periodic configuration with normalized 
thermal conductivity of 3.97 � 10� 3, the evolutions converge at the 27- 
th and 24-th generation for optimization in x and y direction, respec-
tively. The optimal normalized thermal conductivities are 4.27 �
10� 3and 4.35 � 10� 3, which are about 8% and 10% higher than that of 

Fig. 2. The genetic algorithm enabled 
search process and optimization results. (a) 
The approach of constructing a large-size 
configuration of 4 by 17 pore arrangement 
from a reduced-size configuration with 4 by 
4 pore arrangement. (b) The workflow of the 
two-step search process. BTE simulation is 
demonstrated for pre-screening and then 
NEMD simulation is performed to validate 
the optimal configuration found by GA. (c) 
The process of optimization for x and y di-
rection, shown by the evolution of BTE 
computed normalized thermal conductivities 
with the GA generation. The small red (blue) 
circles denote the thermal conductivities of 
individuals in each generation, and the best 
individuals are denoted by the red (blue) 
solid dots. (d) The comparison of optimiza-
tion output and the overall time cost be-
tween the genetic algorithm enabled search 
method and manual search method. 2 suc-
cessful and 21 unsuccessful cases are distin-
guished using magenta and green colors.   
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the periodic configuration, respectively. For the two optimal configu-
rations with disorder in x and y direction, the corresponding NEMD 
validated thermal conductivities are 44.3 W/mK and 43.1 W/mK, which 
are 8% and 5% higher than that of periodic configuration (41.0 W/mK). 
This enhancement is obviously larger than the statistical uncertainty of 
NEMD simulations and is accordingly a true enhancement. Therefore, 
this two-step search process successfully discovered an unexpected 
scenario, i.e., the thermal conductivity of disordered nanoporous gra-
phene can be higher than the ordered counterpart. To our best knowl-
edge, no such behavior has been reported in the literature yet. 

The total computational cost needs to be highlighted. In this two-step 
search process, the computation cost for GA optimization is negligible, 
and thus the overall computational cost comes from BTE simulation and 
NEMD simulation. For BTE simulation, 1350 (¼50 � 27) and 1200 (¼50 
� 24) configurations are computed for the optimization in x and y di-
rection, which cost 204 (¼2550 � 0.08) core hours in total. For NEMD 
simulation, two configurations are computed for validation, which cost 
6400 (¼3200 � 2) core hours. Therefore, about 6604 core hours were 
spent in this genetic algorithm enabled two-step search process. 
Compared to the manual search, our novel two-step search process 
proves to be very effective for our purpose of searching for exceptions. 
As summarized in Fig. 2d, in the unsuccessful manual search, about 
67200 core hours were spent, while no disorder-enhanced case is found. 
For the successful genetic algorithm enabled search, with only 10% of 
the computation cost, two disorder-enhanced cases are found. There-
fore, this genetic algorithm enabled two-step search strategy largely 
reduces the computational cost while increases the probability of 
success. 

Similar to the optimization for high thermal conductivity, we can 
also perform optimization for low thermal conductivity. We note that 
thermal conductivities of randomly generated configurations with dis-
order in y direction are usually lower than that of with disorder in x 
direction. Therefore, the low thermal conductivity configuration is 
searched within the cases with disorder in y direction. The normalized 
thermal conductivity and NEMD computed thermal conductivity are 
2.76 � 10� 3 and 20.8 W/mK, respectively. The optimization results are 
included in the Supporting Information. 

2.3. Structural analysis 

Discovering the unexpected higher thermal conductivity in disor-
dered porous graphene provides an exciting opportunity of under-
standing the intriguing physics behind it. It cannot be explained by the 

wave-like behaviors of phonons since the high thermal conductivity 
configuration is found in a disordered structure. We note that Maire 
et al. reported that at 4 K, the thermal conductivity of silicon nanoporous 
membranes can increase with some degree of disorder [36], and the 
authors attributed it to the randomness destroying the phonon bandgap 
in periodic structures hence allowing those phonons originally in the gap 
to contribute to heat transfer. Our system shows a different mechanism, 
otherwise, all our random configurations should have broken the 
phonon bandgap and easily shown enhanced thermal conductivity. We 
hypothesize that our enhancement of thermal conductivity of these two 
disordered configurations may be attributed to the particular pore ar-
rangements that could enhance the particle-like transport of phonons. In 
order to understand how the pore arrangement can affect thermal con-
ductivity, we inspect the four representative configurations: periodic 
configuration, two configurations with the highest thermal conductivity 
found in our genetic algorithm enabled two-step search, and also the 
configuration with lowest thermal conductivity. These configurations 
with BTE computed heat flux are shown in Fig. 3a, b, c, d. In the periodic 
configuration, the neck width [27] is small in the columns with pores 
and pretty large in the columns without pores. In comparison to the 
periodic configuration, we find that the highest thermal conductivity 
configuration with displacement only in x direction, shown in Fig. 3b, 
has a more uniform neck distribution in x direction, which originates 
from the more spread pore arrangement in the x direction. For the case 
with y direction displacements, the high thermal conductivity configu-
ration, shown in Fig. 3c, has two wide channels between two different 
rows of pores. Whereas, in the low thermal conductivity configuration, 
shown in Fig. 3d, there is no clear channel and the pore arrangement in y 
direction is more spread compared to the configuration (c). Therefore, 
we expect the specific pore arrangement in x or y direction can have a 
significant influence on the thermal conductivity. 

Inspired by such observation, we proposed two structural parame-
ters—shape factor and channel factor, to describe the characteristics of 
pore arrangement in x and y direction. The concept of shape factor arises 
from the conduction shape factor used for determining the thermal 
resistance of 2D or 3D systems by the graphical method [57]. In the 
quasi-1D conduction scenario, as shown in Fig. 3e, the shape factor is 
defined as S ¼ 1=

R dx
AðxÞ. For our nanoporous systems, A(x) is related to 

the pore arrangement in x direction. Based on the definition, the 
configuration with more spread pore arrangement in x direction will 
have a larger shape factor. This means that pores belonging to different 
rows need to offset a certain amount. On the other hand, based on the 
observations, we proposed another parameter to describe the channels 

Fig. 3. The thermal transport in different nanoporous structures. The magnitude of BTE computed heat flux for (a) periodic configuration, (b), (c) the configuration 
with disorder in x and y direction identified by the GA optimization for high thermal conductivity, (d) the configuration with disorder in y direction identified by the 
GA optimization for low thermal conductivity. The corresponding thermal conductivity k* are presented below the configurations and the color bar is shown beside. 
(e) The shape factor illustrated using a quasi-1D heat conduction scenario. The left red line and right blue line denote the isothermal boundary conditions with T1>T2. 
The top, bottom, inner circle boundaries and symmetric lines are adiabatic. The orange lines represent isothermal and heat flow lines, delineated according to the 
boundary conditions. (f) The schematic of heat transfer channel, denoted by the blue region between two rows of pores. 
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existing between two rows of pores, as shown in Fig. 3f. We define the 
channel factor C as the standard deviation of A(y), where A(y) is related 
to the pore arrangement in y direction. Specifically, the configuration 
with a more spread pore arrangement in y direction will have a smaller 
channel factor. 

By inspection of a few representative cases, we intuitively found that 
the thermal conductivity is closely related to pore arrangement, which 
can be quantified by shape factor and channel factor. However, it is still 
necessary to further examine whether these two structural parameters 
can be good descriptors for the thermal conductivities of disordered 
configurations. First, we verified the Pearson correlation coefficient [58] 
between the structural parameter and BTE computed thermal conduc-
tivities, which is usually used for the representing linear correlation 
between quantities. The corresponding values for shape factor and 
channel factor are 0.65 and 0.73, respectively. These results indicate 
good correlations between these two structural parameters and thermal 
conductivity. More details about the correlations between descriptors 
and thermal conductivities can be found in Supporting Information. 
Furthermore, we performed a regression analysis to find out the specific 
relationship between these two structural parameters and thermal 
conductivities. For this purpose, we choose the Least Square Regression 
(LSR) method [58–61], which has the special advantage of explicitly 
uncovering the relationship between the variables. The regression 
analysis strategy is shown in Fig. 4a. First, a dataset is generated 
including normalized thermal conductivities k* of disordered configu-
rations from BTE simulation and the corresponding shape factor S and 
channel factor C from structural analysis. To make the analysis more 
general, this dataset includes the configurations with disorder in either x 
or y direction and both two directions. Before regression, the dataset is 
randomly divided into a training set and test set, which is used for 
training the regression model and validating the prediction accuracy, 
respectively. We select 12 prototypical functions acting on the shape 
factor S and channel factor C to generate the basic components of the 
regression model, which are x,x� 1, x1/2, x� 1/2, x2, x� 2, x3, x� 3,ln(x), 1/ln 
(x), ex, e-x. With the training dataset, LSR is applied to establish the 

regression functions. Screening for the best ones is then demonstrated 
based on the coefficient of determination, which is commonly used for 
evaluating the prediction precision of regression function [1]. Two 
rounds of regression and screening are performed to formulate best the 
regression model k* ¼ f (S, C). More details about regression analysis can 
be found in Supporting Information. 

The final predictive model of normalized thermal conductivity as a 
function of the two structural parameters is given by: 

k*¼ 4:58� 10� 3 � 5:30� 10� 4S� 3 þ 6:64� 10� 2C3 (1) 

The predicted thermal conductivities of the training set and test set 
based on eq (1) are shown in Fig. 4b. The coefficient of determination of 
the prediction model for the training set and test set is 0.91 and 0.88, 
which shows that the prediction model can reasonably describe the 
relationship between the structural parameters and thermal conductiv-
ity. We finally compare the predicted normalized thermal conductivities 
and NEMD simulated thermal conductivities to evaluate the reliability of 
the prediction model. As shown in Fig. 4c, the predicted normalized 
thermal conductivities are still well correlated to the NEMD simulated 
thermal conductivity. The corresponding coefficient of determination is 
0.78. Although small deviations appear, the overall consistency can still 
indicate that the structural parameters can effectively quantify the pore 
arrangement and be good descriptors for the thermal conductivity of 
nanoporous materials. 

From eq (1), we can see that the normalized thermal conductivity 
increases with the increment of shape factor and channel factor. Com-
bined these results with the definition of shape factor and channel fac-
tor, we found that a more spread pore arrangement in the x direction can 
enhance the thermal conductivity, while a more spread pore arrange-
ment in the y direction can reduce the thermal conductivity. Therefore, 
the results of data analysis confirmed intuitive observations. This is a 
good example to show that with the help of machine-learning based 
method, new physical understanding of thermal transport can be 
discovered and validated. 

Fig. 4. Applying regression analysis for 
predicting the thermal conductivity of 
nanoporous graphene. (a) The schematic of 
the regression workflow for establishing the 
prediction model. The database is composed 
of thermal conductivities of disordered con-
figurations and two structural parameters 
obtained from BTE simulation and structural 
analysis, respectively. The screening and 
regression processes are performed on the 
database and then a prediction model is 
obtained. (b) The comparison of thermal 
conductivity k*calculated by BTE computa-
tion and the regression model. (c) The 
comparison of thermal conductivity 
k*computed by MD computation and the 
machine-learning predicted thermal con-
ductivity k.   
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3. Conclusion 

In summary, we demonstrated an effective genetic algorithm-driven 
approach to discovering exceptions. Specifically, we investigated the 
thermal transport in disordered nanoporous graphene and attempted to 
find out disordered configuration with an unexpected higher thermal 
conductivity than the periodic counterpart. While the manual search 
was very expensive but unsuccessful, we proposed an efficient genetic 
algorithm enabled search method implemented with a “two-step opti-
mization” strategy and discovered unexpected enhancement of thermal 
conductivity by disorder. Based on the structural analysis of the unusual 
cases, we proposed two parameters, shape factor and channel factor, to 
quantify the structural characteristics. The regression analysis further 
uncovered the relationship between the two structural parameters and 
thermal conductivities. We find that more spread pore arrangement in x 
direction can enhance the thermal conductivity, while more spread pore 
arrangement in y direction leads to lower thermal conductivity. Our 
findings not only provide new insight in thermal transport in 2D random 
nanoporous materials but also demonstrates the effectiveness of ma-
chine learning to assist the discovery of small probability events. 
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Appendix 

NEMD simulation. NEMD simulations involved in this paper are 
performed with the LAMMPS package [62]. Tersoff potential [63] is 
used to simulate the interatomic interactions among the carbon atoms. 
Fixed and periodic boundary conditions are applied along the length and 
width directions, respectively. Langevin thermostats with different 
temperatures are coupled with two ends of the simulation system to 
build up the temperature gradient along the thermal transport direction. 
The thermal conductivity is computed according to the Fourier’s Law 
[64] based on the heat flux and temperature gradient in the steady state. 
More details about NEMD simulations are included in the Supporting 
Information. 

BTE simulation. Boltzmann transport equation can describe phonon 
transport phenomenon and be used for solving ballistic heat conduction 
and obtain effective thermal conductivity of nanostructures [65–67]. 
Here we chose to solve the MFP-dependent BTE [68] numerically using 
the finite volume method and discrete ordinate method. All the simu-
lations are performed with the OpenBTE package [68,69]. The only 
input of this computational framework is the bulk cumulative thermal 
conductivity [68]. More details about OpenBTE simulation details are 
included in the Supporting Information. 

Genetic algorithm. Genetic algorithm is a global search algorithm 
based on the evolutionary principles of natural genetics and natural 
selection with the goal of optimizing a supplied fitness function [49]. In 
general, there are several processes involved in GA: population process, 
fitness calculation, selection and mutation [49]. More details about the 
GA optimization process are included in the Supporting Information. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nanoen.2020.104619. 
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