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a b s t r a c t 

Understanding the thermal transport mechanism in porous media is important for various engineering 

and industrial applications. The effective thermal conductivity of porous media is known to be related 

to the morphology of porous structures. However, existing effective medium approaches usually miss the 

morphology effects, and numerical simulations are expensive and not physically intuitive. Machine learn- 

ing methods have recently been successful in predicting effective thermal conductivity, but the lack of 

descriptors limits physical insights. In this work, we investigate structural features that have significant 

effects on thermal transport in porous media and identify five physics-based descriptors to characterize 

the structural features: shape factor, bottleneck, channel factor, perpendicular nonuniformity, and dom- 

inant paths. These descriptors can effectively quantify the anisotropy of pore morphology and strongly 

correlate with effective thermal conductivities. The proposed descriptors are incorporated into machine 

learning models to predict the effective thermal conductivity of porous media, and the results are shown 

to be fairly accurate. They provide new insights into the thermal transport mechanisms in complex het- 

erogeneous media. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Porous media, such as fibrous composites, granular materials,

acked beds, and foam, have a variety of applications in material,

erospace, biological and medical engineering [1,2] . Effective ther-

al conductivity is one of the key thermophysical properties of

orous media, especially for thermal management applications [3] .

here have been numerous previous investigations on heat conduc-

ion in porous media through experiments [4] , analytical methods

5] , or numerical simulations [6,7] . The effective thermal conduc-

ivity of porous media is known to depend on the thermal con-

uctivity of the composition phase, porosity, and porous morphol-

gy [8] . However, the effect of the latter is complicated. Effective

edium approaches often ignore it, while numerical methods cap-

ure it but do not offer physical insights. Identifying and quanti-

ying morphology features that are correlated to thermal conduc-

ivity is vital for understanding the heat conduction mechanism in

orous media. 

With the recent advances of data-driven techniques, investi-

ating the structure-property relationship through machine learn-

ng methods has attracted significant research interest [9–17] . Ma-
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hine learning methods have been successfully applied to obtain

urrogate models for predicting the effective thermal conductivity

f composite materials and porous media [18,19] . Machine learn-

ng methods can generally be divided into two categories. One

s the deep learning methods based on convolutional neural net-

ork (CNN) [20] , which can automatically extract structural feature

aps of porous media and accurately predict the effective thermal

onductivity. However, because feature maps [20] are not physi-

ally interpretable, CNN can only serve as a prediction model with-

ut physical understanding [18] . The other category is conventional

achine learning methods, such as support vector regression (SVR)

21] and Gaussian process regression (GPR) [22] . The accuracy of

hese methods heavily relies on manually selected structural de-

criptors [23] . Some existing descriptors can effectively quantify

tructural features, but the physics is not intuitive, such as the

wo-point correlation function [24,25] . Other descriptors can have

lear physical meanings, such as pore size, aspect ratio, and ori-

ntation distribution [26,27] . These physics-based descriptors are

ore favorable because they can guide understanding of the ther-

al transport mechanism in porous media. These descriptors are

lso commonly used in analytical models to include specific mor-

hological features [28] . In order to achieve a better prediction

ccuracy for complex porous media and at the same time guide

he understanding of heat transfer mechanism, developing physics-
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Fig. 1. Generation of porous structure with the QSGS method. (a) Eight growth di- 

rections of each point for 2D systems. The direction 1, 2, 3 and 4 denote the main 

growth directions and direction 5, 6, 7 and 8 denote the diagonal growth directions. 

(b) An example of QSGS generated 2D porous structure. The blue and white region 

denotes the matrix (solid) and pore phase. In FEM simulation, the heat flux is set 

along the x direction. 
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Nomenclature 

ε Porosity 

c d Core distribution probability 

g i Directional growth probability 

A x matrix cross-section along x direction 

A y matrix cross-section along y direction 

SF Shape factor 

BL Bottleneck 

PN Perpendicular nonuniformity 

CF Channel factor 

DP Dominant paths 

based descriptors to quantify the complex morphologies in porous

media is highly desirable. 

In this work, the structural features of high and low ther-

mal conductivity complex porous media are first examined. We

propose five physics-based descriptors that are intuitive and able

to capture the structural features related to thermal transport.

The strong correlations between these descriptors and the effec-

tive thermal conductivity are demonstrated. The effective thermal

conductivities of complex porous media are then accurately pre-

dicted using conventional machine learning methods. The rest of

the manuscript is organized as follows. In Section 2 , the structural

features that have an important effect on the effective thermal

conductivity of porous media are investigated with a large dataset

composed of porous structures and corresponding thermal conduc-

tivities. In Section 3 , five physics-based descriptors are identified to

represent the significant structural features. In Section 4 , the cor-

relations between descriptors and thermal conductivities are pre-

sented. The physical significance of the descriptors in describing

the structural features is discussed. In Section 5 , machine learning

analysis with the proposed descriptors is demonstrated. 

2. Significant structural features 

We focus on thermal transport in two-dimensional (2D) porous

media with granular pores. Quartet structure generation set (QSGS)

is a random internal morphology and structure generation-growth

method, which can reflect the stochastic distribution characteris-

tics of most porous media [29] . Therefore, QSGS is adopted here

to generate granular porous configurations that closely resemble

realistic granular porous media. [29] . In the 2D QSGS generation

process, there are three major input parameters, which are poros-

ity ε, core distribution probability c d , and growth probability in

eight directions g i , i = 1…8 [30] . c d is used to control the averaged

pore size. Directional growth probabilities are used to control the

anisotropy of the pore shape. Fig. 1 (a) shows the eight growth di-

rections of pores, where g 1–4 are the main directional growth prob-

abilities, and g 5–8 are the diagonal directional growth probabilities.

Fig. 1 (b) shows an example of the generated 2D porous media,

where the pores (white phase) are discontinuously distributed in

the continuous matrix (blue phase). 

Studies have shown that effective thermal conductivity can be

significantly affected by different morphologies of pores [31,32] . As

such, we intentionally generate structures with different morpho-

logical characteristics, including porosity, pore size, shape, and dis-

tribution. Specifically, the porosities ε include 10%, 20%, 30%, 40%,

and 50%. The pore size is controlled by taking different core dis-

tribution probability c d , including 0.0125 ε, 0.1 ε, and 0.025 ε. The

pore shape is controlled by different directional growth probabili-

ties in eight directions, which include 41 different cases. Because

the generation process is random [30] , different distributions of

pores can be naturally included. We generate five structures for
ach combination of these input parameters to span the different

istributions. In total, 3075 structures are generated for the whole

ataset. 

The lengths and widths of all configurations are set to 100 pix-

ls so that the total size is 100 × 100, as shown in Fig. 1 (b). It is as-

umed that heat transfer is along the x direction. To obtain the ef-

ective thermal conductivity, we consider macroscopic heat trans-

er by solving the heat diffusion equation and applying Fourier’s

aw [33] . In the macroscopic regime, size does not affect the values

f effective thermal conductivity, so its unit is arbitrary [34] . Sim-

larly, temperature difference does not affect the effective thermal

onductivity [34] , so fixed temperature boundary conditions with

 dimensionless temperature of 1 and 0 are assigned to the left

nd right boundary, respectively. Periodic boundary conditions are

sed for the top and bottom boundaries. Without loss of generality,

he dimensionless thermal conductivity values of matrix and pores

re fixed as 100 and 1, respectively. The 2D heat diffusion equation

s solved with the finite element method (FEM), which is imple-

ented with a python package developed by the FEniCS Project

35] . In the FEM simulation, each pixel is further discretized into 4

lements to ensure numerical convergence. 

Fig. 2 (a) shows the effective thermal conductivities of the to-

al 3075 configurations (red hollow circles) with different porosi-

ies. The results from the parallel (magenta line) and series model

black curve) are also plotted, serving as the upper and lower

ounds of effective thermal conductivity [36] . Thermal conduc-

ivity values of all configurations cover almost the entire range

etween the upper and lower bounds. Fig. 2 (a) also shows the

ffective thermal conductivities predicted by the Maxwell model

37] (blue curve) and the Bruggeman model [38] (green curve). It

an be clearly seen that their accuracies are limited because they

nly include porosity as the structural feature and can be only ap-

licable to isotropic media [28] . 

In order to consider the structural effect on the effective ther-

al conductivity, we further examine the detailed morphology of

ifferent porous structures. Fig. 2 (b–j) shows typical porous struc-

ures and their corresponding thermal conductivities. These values

re also indicated in Fig. 2 (a). Structures (b), (c) and (d) all have

sotropic pores and their thermal conductivity values decrease with

he increase of porosity. The values are close to the Bruggeman

odel, which confirms the capacity of the Bruggeman model in

stimating the thermal conductivity of isotropic structures. Struc-

ures (e), (f), and (g) have the same porosity, similar pore size,

nd shape, but differ in the distribution of pores, causing a signif-

cant difference in the thermal conductivity. Structures (h), (i), and

j) have the same porosity and similar pore size but differ in the
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Fig. 2. Thermal conductivities and typical porous structures. (a) Thermal conductivities of the 3075 porous configurations as a function of the porosity, computed by the 

FEM method and four analytical models: parallel model (magenta line), series model (black curve), Maxwell model (blue curve) and Bruggeman model (green curve). (b–j) 

Typical porous structures with different porosity, pore size, shape, and arrangements. The corresponding thermal conductivity is shown below the figure and marked in (a). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. The schematic of matrix distribution. (a) An example of the morphology of 

porous structure. (b), (c) The rearranged representations of configuration (a), where 

the matrix and pore phases are accumulated along the x and y direction, respec- 

tively. A x and A y are the matrix cross-sections along x and y direction (black lines), 

respectively. 
nisotropies of pore shape, also inducing large difference in ther-

al conductivity. These results indicate that besides porosity, the

ore shape and distribution can significantly affect the heat trans-

er in porous media. 

Therefore, for complex porous media, the detailed morphology

r pore arrangement should be considered. Existing structural de-

criptors, such as aspect ratio, the number of clusters, and the

rientation angle of a cluster’s principal axis [27] , are difficult to

uantify in our system. Even they can be quantified; the rela-

ionship between the descriptors and thermal transport is unclear.

n our previous investigation of nanoporous graphene, two struc-

ural descriptors, shape factor and channel factor, are found to be

trongly correlated to the thermal transport property [39] , besides

onsiderations of phonon ballistic and wave effects. Inspired by

hat work but neglecting ballistic and wave effects of heat con-

uction since we consider diffusive transport here, we propose five

tructural descriptors attempting to capture the structural differ-

nces of the typical structures shown in Fig. 2 . 

. Physics-based descriptors 

Five descriptors are proposed to describe the pore shape and

istribution that have significant effects on the heat conduction. In

his section, we first introduce the basis of descriptors and then

iscuss the definitions and physical meanings of these descriptors. 

.1. Basis of descriptors 

For a typical structure shown in Fig. 3 (a), we can accumulate

he matrix and pore phases along the x and y direction, respec-

ively. The rearranged structures are shown in Fig. 3 (b) and (c),

here the matrix cross-section along the x, y direction, A x ( y ) and

 y ( x ), are also shown. The subscript denotes the aligning direction

f the cross-section and the variable is shown in the bracket. They

erve as the basis to build our five descriptors. 

.2. Descriptors 

The five descriptors we propose are the shape factor ( SF ),

ottleneck ( BN ), channel factor ( CF ), perpendicular nonuniformity

 PN ), and dominant paths ( DP ). Their definitions are given below. 

.2.1. Shape factor 

The shape factor is a useful concept to describe heat conduction

n two-dimensional or three-dimensional systems by the graphical
ethod [33] . If 2D or 3D heat conduction is treated with the quasi-

D approximation, the shape factor can be calculated as [33] 

F = 1 / 

∫ 
1 

A y 
d x. (1)

This definition should not be confused with the shape factor in

ome literature [32] , where it is used to describe the sphericity or

ircularity of pore shape in three-dimensional or two-dimensional

orous media. 

.2.2. Bottleneck 

The bottleneck is defined as 

N = min A y , (2) 

hich is the shortest matrix cross-section along y direction. The

raphical illustration of bottleneck is shown in Fig. 4 (a). It is in-

erred that the porous configuration with a large piece of con-

ected pore phase along the y direction can have a small bot-

leneck. The bottleneck effect has been illustrated in several re-

earch works about nanoporous structures [40,41] . For structures

ith circular pores, either periodic or disordered, the bottleneck

an be identified from the shortest distance between pores along
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Fig. 4. Graphical illustration of proposed descriptors: (a) Bottleneck. (b) Channel factor. “Std.dev” denotes standard deviation. (c) Perpendicular nonuniformity. (d) Dominant 

paths. “Dom.paths” denotes dominant paths. (e) Series structure. (f) Parallel structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The values of descriptors of the series and parallel structure. “SF ”, “BN ”, 

“CF ”, “PN ”, and “DP ” denotes shape factor, bottleneck, channel factor, 

perpendicular nonuniformity, and dominant paths, respectively. ε de- 

notes the porosity, ranging from 0 to 1. The values of the bottleneck, 

channel factor, perpendicular nonuniformity, and dominant path are 

normalized by the domain size. 

Structure SF BN CF PN DP 

Series 0 0 0 ε (1 −ε ) 1 −ε

Parallel 1 −ε 1 −ε ε (1 −ε ) 0 1 
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the path that is perpendicular to heat flow [40,41] . For porous ma-

terials with random heterogeneous microstructure, it is difficult to

identify the bottleneck precisely with a similar approach. We be-

lieve the definition as shown in Eq. (2) can sufficiently reflect the

blocking effect caused by the narrow channel on the heat flow. 

3.2.3. Channel factor 

The channel factor is defined as the standard deviation of A x 

with probability density function p ( A x ), which is given by 

CF = 

√ ∫ 
( A x − μ) 

2 p ( A x ) d y , where μ = 

∫ 
A x p ( A x ) d y. (3)

The graphical illustration of the channel factor is shown in

Fig. 4 (b). The channel factor quantifies the distribution uniformity

of matrix cross-sections along the direction parallel to the heat

flow. According to the definition, a more uniform distribution of A x 

(e.g. the value of A x is close to constant) results in a smaller value

of channel factor. In our previous work about nanoporous material

with circular pores [39] , the uniformity of pore distribution along

the direction parallel to the heat flow is defined as the “channel

factor”. Here, the terminology is kept consistent. 

3.2.4. Perpendicular nonuniformity 

The perpendicular nonuniformity is defined as the standard de-

viation of A y with probability density function p ( A y ), which is given

by 

PN = 

√ ∫ 
( A y − ν) 

2 p ( A y ) d x , where ν = 

∫ 
A y p ( A y ) d x. (4)

The graphical illustration of the perpendicular nonuniformity is

shown in Fig. 4 (c). We note that in a previous work analyzing heat

transfer in polycrystals, the grain boundaries directly blocking the

heat flow have a significant effect on the thermal conductivity [42] .

These grain boundaries are similar to the cross section area A y de-

fined in porous media. To include the complex and stochastic mor-

phologies, the perpendicular nonuniformity is proposed to explic-

itly quantify the distribution nonuniformity of matrix cross-section

area A y . According to the definition, a more uniform distribution

of matrix A y (e.g. the value of A y is close to constant) leads to a

smaller value of perpendicular nonuniformity. 

3.2.5. Dominant paths 

The dominant paths are defined as 

D P = 

∫ 
λ

A x d y, (5)
hich is the sum of a certain percent ( λ) of the longest matrix

ross-sections along x direction. In this work, λ is set as 30%. The

raphical illustration of dominant paths is shown in Fig. 4 (d). Pre-

ious studies have shown continuous heat transfer paths formed

n a highly conductive matrix phase can significantly enhance the

hermal transport in porous materials [36,43] . To include this ef-

ect, we propose the dominant paths to indicate the amount of ef-

cient heat flow paths in the porous structures. 

Figs. 4 (e) and (f) show the series and parallel structures and the

orresponding values of descriptors are presented in Table 1 . Ob-

iously, the values of descriptors for the series and parallel struc-

ure are quite different, which indicates that the descriptors can

ffectively distinguish the structural difference between the two

enchmark structures. Because the series (parallel) structure has

he lowest (highest) thermal conductivity along the x direction and

he highest (lowest) thermal conductivity along the y direction.

hey can be regarded as two extremes of anisotropic structures.

imilar to the effective thermal conductivity, the series structure

nd parallel structure can serve as the bounds for the anisotropy,

hich are quantified by the descriptors. As shown in Table 1 , the

eries (parallel) structure serves as the lower (higher) bound for

hape factor, bottleneck, channel factor, and dominant paths and

igher (lower) bound for perpendicular nonuniformity for a certain

orosity. 

. Correlation between the descriptor and thermal conductivity

Next we investigate the correlations between each descriptor

nd the thermal conductivities, and the results are shown in Fig. 5 .

t can be seen that the shape factor ( Fig. 5 a), bottleneck ( Fig. 5 b)

nd dominant paths ( Fig. 5 e) have good positive correlations with

hermal conductivities, while the channel factor ( Fig. 5 c) and the

erpendicular nonuniformity ( Fig. 5 d) have moderate negative cor-

elations with thermal conductivities. 
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Table 2 

Pearson’s correlation coefficient r and Spearman’s correlation coef- 

ficient ρ between descriptors and effective thermal conductivities. 

“SF ”, “BN ”, “CF ”, “PN ”, and “DP ” denotes shape factor, bottleneck, 

channel factor, perpendicular nonuniformity, and dominant paths, 

respectively. 

Descriptors SF BN CF PN DP 

r 0.934 0.939 −0.242 −0.663 0.951 

ρ 0.952 0.940 −0.338 −0.688 0.960 

c  

F

n

In order to quantify the correlations, Pearson’s correlation co-

fficient r [44] and Spearman’s rank correlation coefficients ρ
45] are calculated for each descriptor. The Pearson’s correlation

oefficient is used for measuring the linear correlation between

wo variables, which ranges from −1 to 1. A value of 1, 0 and

1 implies a perfect positive linear, no linear and perfect nega-

ive linear correlation between the variables, respectively [44] . The

pearman’s rank correlation coefficient is used for measuring the

onotonic correlation between two variables (whether linear or

ot), which is equal to the Pearson’s correlation between the rank

alues of the two variables [45] . 

Table 2 presents the two correlation coefficients for each de-

criptor. For all the descriptors, the absolute values of Spearman’s

l  

ig. 5. Correlations between descriptors and effective thermal conductivities: (a) shape f

ant paths. 
orrelation coefficient ρ are higher than that of Pearson’s corre-

ation coefficient r . This is because the Spearman’s correlation is
actor, (b) bottleneck, (c) channel factor, (d) perpendicular nonuniformity, (e) domi- 
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Fig. 6. The descriptors of porous structures with different pore distribution (a) and shapes (b). The corresponding configurations and thermal conductivities are shown at 

the top of the figures. 
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R  
related to the value of ranks but not the values of variables and

is less sensitive to the outliers than the Pearson’s correlation. Both

correlation coefficients indicate that the shape factor, bottleneck,

and dominant paths have strong positive correlations with thermal

conductivities. The perpendicular nonuniformity and channel fac-

tor have a moderate and weak negative correlation with thermal

conductivities, respectively. 

In our previous study about nanoporous graphene [39] , the cor-

relation coefficient of channel factor is 0.73, which is higher than

the corresponding value in this study. There are two reasons ac-

counting for such a difference. The first reason is that the two

studies consider different transport regimes. Here we consider dif-

fusive regime, while in nanoporous graphene phonon transport is

mainly in the ballistic regime [39] . The channel effect is more im-

portant in that regime due to the classical size effect [46] . On the

other hand, the value of the correlation coefficient is also related to

the dataset. The correlation coefficient shown in Table 2 is based

on the dataset with different pore sizes and anisotropies. In our

previous work [39] , the pore size is the same and the configura-

tions only differ in pore arrangement. The two factors above col-

lectively result in a lower correlation coefficient of channel factor

in comparison with the previous study. 

In order to investigate how the morphological features could

be quantified by descriptors, we further take an examination of

the detailed morphologies of porous structures with different pore

distributions and shapes. Fig. 6 (a) presents the values of descrip-

tors corresponding to three porous structures with different dis-

tributions of isotropic pores. The configurations are shown above

the figure, named as I1, I2, and I3, respectively. For configuration

I1, some pores are packed densely normal to the heat flow di-

rection, making the structure anisotropic and close to the series

structure. For configuration I3, the long channels parallel to the

heat flow direction induce the anisotropy, which is close to the

parallel structure. In terms of descriptors, the parallel-like struc-

ture (I3) has larger values of shape factor, bottleneck and dominant

paths and a smaller value of perpendicular nonuniformity than

the series-like structure (I1). The significant differences of descrip-

tors between the configurations indicate that the pore distribution

can be effectively quantified by the descriptors. Fig. 6 (b) shows

the values of descriptors corresponding to three porous structures

with different anisotropic pores, which are shown above, named as

A1, A2, and A3, respectively. Similarly, for the parallel-like struc-

ture (A3), the values of shape factor, bottleneck, and dominant

paths are larger and the perpendicular nonuniformity is smaller

than that of series-like structure (A1). Thus, these descriptors

can also effectively distinguish the different anisotropies of pore

shape. 
M  
As indicated in Section 3 , the series and parallel structure

re two extremes of anisotropic structures, of which the values

f descriptors can serve as the bounds for all the isotropic and

nisotropic structures. Therefore, the effect of anisotropy on the

hermal transport can be explained by the degree of similarity to

he series or parallel structure, which is described by the descrip-

ors. The structure has larger (smaller) values of shape factor, bot-

leneck and dominant paths or a smaller (larger) value of perpen-

icular nonuniformity may be more similar to the parallel (series)

tructure and thus have a high (low) thermal conductivity. From

eries-like structure to parallel-like structure, the changes of the

istribution of matrix will induce the increase of shape factor, bot-

leneck, dominant path, and decrease of perpendicular nonunifor-

ity according to their definitions, and in turn increase the ther-

al conductivity, as shown in Fig. 5 and Table 2 . 

. Machine learning prediction 

We further evaluate the predictive capability of these descrip-

ors for porous structures with machine learning methods. Two

onventional machine learning methods are implemented, which

re Support Vector Regression (SVR) [47] and Gaussian Process Re-

ression (GPR) [48] . SVR and GPR are two typical nonlinear regres-

ion methods that can establish relationships between descriptors

nd targeted quantity based on statistical learning of the given

ataset. The principles of these two methods can be referred to

ur previous work [18] . The python package scikit-learn [49] is

mployed to carry out the regression analysis. The five descriptors

roposed above are considered in machine learning models, with-

ut any additional descriptors. 

The dataset described in Section 2 is randomly divided into the

raining and test sets, which have 2460 and 615 pieces of data, re-

pectively. The training set is used to obtain the relationship be-

ween descriptors and thermal conductivities, in which the five-

old cross-validation is applied to avoid over-fitting [50] . The test

et is used to estimate the accuracy of the trained model. The rel-

tive prediction error is given by 

elative prediction error = 

(
ˆ y k − y k 

)
/ ̂  y k × 100% , k = 1 ...K. (6)

Besides, three metrics are used for accuracy evaluation, which

s the root mean square error (RMSE), mean absolute error (MAE)

nd determination coefficient ( R 2 ) [19] . The definitions are given

y 

MSE = 

√ 

1 

K 

K ∑ 

k 

(
ˆ y k − y k 

ȳ k 

)2 

× 100% , (7)

AE = 

1 

K 

K ∑ 

k 

∣∣∣∣ ˆ y k − y k 
ȳ k 

∣∣∣∣ × 100% , (8)
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Table 3 

The RMSE, MAE, and R 2 of the training set and test set predicted with five proposed descrip- 

tors and only porosity. 

RMSE (%) MAE (%) R 2 

SVR GPR SVR GPR SVR GPR 

Proposed descriptors Training 14.95 15.91 9.67 10.52 0.98 0.98 

Test 16.02 17.54 12.28 12.80 0.98 0.97 

Only with porosity Training 57.11 59.71 22.46 22.13 0.92 0.90 

Test 64.10 63.31 24.15 26.61 0.87 0.87 

Fig. 7. Machine learning predicted results of the test set. (a) Comparison between the FEM computed effective thermal conductivities and SVR, GPR predicted thermal 

conductivities. (b) Relative prediction errors with respect to the FEM computed thermal conductivities. 
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2 = 1 −

K ∑ 

k 

( ̂  y k − y k ) 
2 

K ∑ 
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( ̄y k − y k ) 
2 

. (9) 

In Eq. (6) ~(9), ˆ y k denotes the accurate value of the effective

hermal conductivity, computed by the FEM simulation. y k denotes

he predicted value of effective thermal conductivity. ȳ k denotes

he average value of the effective thermal conductivity in the set.

 denotes the data index and K denotes the number of data in the

et. 

After training with machine learning methods, the surrogate

odels for predicting the effective thermal conductivity of porous

tructures based on five descriptors can be obtained. Accordingly,

e can obtain the errors of the predictive model for the train-

ng set and test sets. Fig. 7 (a) shows the comparison between

he FEM computed thermal conductivities and machine learning

ethods predicted thermal conductivities of the test sets. The ma-

hine learning predicted thermal conductivities are close to the

EM computed ones for almost the whole range from 2 to 90, in-

icating that the predictive model is accurate. Fig. 7 (b) shows the

elative prediction errors ( Eq. (6) ) with respect to the computed

hermal conductivities. Most relative prediction errors are within

he range of −20–20%, which are acceptable in engineering. In ad-

ition, both figures show that the prediction results of GPR and

VR are close. We note the relative prediction errors increase with

ecreasing thermal conductivity and are large when thermal con-

uctivity values are lower than 20. The reason is that we minimize

he absolute error instead of relative error in the training process

f SVR and GPR. It is possible to reduce them if we choose the

elative error to be the loss function. 
Table 3 presents the RMSE, MAE, and R 2 of the training set and

est set predicted by SVR and GPR method with the five proposed

escriptors. It can be seen that the RMSE, MAE, and R 2 of training

nd test set are close, indicating that both predictive models are

ell fitted. The value of R 2 is close to 1, which is consistent with

he results shown in Fig. 7 (a). The errors of SVR and GPR are sim-

lar, which is consistent with the results shown in Fig. 7 (b). It is

lear that the predictive models obtained based on the proposed

escriptors are accurate for predicting the effective thermal con-

uctivities of porous media. 

We also evaluate the predicting performance with only the

orosity as a descriptor, which is also shown in Table 3 . Clearly,

he errors with only porosity as a descriptor are much larger than

hat with the five proposed descriptors. From the above results, it

an be seen that the five descriptors can fairly accurately predict

he effective thermal conductivity of porous media with complex

icrostructures. Furthermore, the predictive power does not rely

n specific machine learning methods. 

. Conclusions 

In conclusion, we recognize the significant effect of the pore

istribution and shape on effective thermal conductivities of

orous media, and propose five descriptors with explicit physical

eanings: shape factor, bottleneck, channel factor, perpendicular

onuniformity, and dominant paths. They are found to strongly

orrelate to effective thermal conductivities of porous media and

ignificantly improve the prediction accuracy compared to effec-

ive thermal conductivities based on porosity alone. These physics-

ased descriptors can be easily extracted from the porous struc-

ure. They can serve as good indicators for structural anisotropy,

hereby providing intuitive picture about the high (or low) thermal

onductivity of porous media. 
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