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Separating electron and phonon components in thermal conductivity is imperative for understanding thermal
transport in metals and highly desirable in many applications. In this work, we predict the mode-dependent
electron and phonon thermal conductivities of 18 different metals at room temperature from first principles.
Our first-principles predictions, in general, agree well with those available experimental data. For phonon
thermal conductivity, we find that it is in the range of 2–18 W/mK, which accounts for 1%–40% of the
total thermal conductivity. It is also found that the phonon thermal conductivities in transition metals and
transition-intermetallic compounds (TICs) are non-negligible compared to noble metals due to the high phonon
group velocities of the former. We further show that the electron-phonon coupling effect on phonon thermal
conductivity in transition metals and intermetallic compounds is stronger than that of nobles, which is attributed
to the larger electron-phonon coupling constant with a high electron density of states within the Fermi window
and high phonon frequency in the former. For electron thermal conductivity, we observe that the transition metals
and TICs have lower electron thermal conductivities compared to noble metals, which is mainly due to the weak
electron-phonon coupling in noble metals. It is found that the Lorenz number of transition metals and TICs
hold larger deviations from the Sommerfeld value L0 = 2.44 × 10−8 W � K−2. We also find the mean free paths
extracted at 50% accumulation function for phonons (within 10 nm) are generally smaller than those of electrons
(5–25 nm).
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I. INTRODUCTION

There have been numerous experimental measurements
and theoretical analyses in order to understand the thermal
transport in metals ever since the early 20th century [1–10].
It has been generally believed that free electrons make a dom-
inant contribution to the thermal transport in metals, while the
phonons make less contribution. In most applications, only
the total thermal conductivity of metals is needed, so it is
unnecessary to separate electron and phonon thermal con-
ductivity. Recently, there has been growing interest in quan-
tifying phonon heat conduction in metals, primarily driven
by recent research advances in a variety of electron-phonon
nonequilibrium energy transfer processes, for example, ther-
mal transport across a metal-dielectric interface [11], laser
manufacturing and laser heating [12], heat-assisted magnetic
recording devices [13], etc. In addition, resolving the size
effect of a metal nanostructure also requires the quantification
of electron and phonon thermal conductivity and the mean
free path of metals [14–17]. Therefore, how to separate the
electron and phonon thermal conductivities of metals becomes
an important problem, which motivates researchers to carry
out various experimental and theoretical works.

In most pure metals, the electron thermal conductivity (κe)
is believed to be much larger than the phonon thermal con-
ductivity (κp). It is well known that the electrical conductivity
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and total thermal conductivity (κtotal) can be measured directly
in experiments. However, it is hard to separately measure the
electron and phonon thermal conductivity directly. In general,
the Wiedemann-Franz law [18] is widely used to evaluate the
electron thermal conductivity, in which the electron thermal
conductivity is determined through the equation κe = LσT ,
where κe is electron thermal conductivity, L is Lorenz number,
and T is temperature. σ is electrical conductivity which
can be experimentally determined, for example, four-probe
resistivity measurement [19]. Furthermore, the phonon ther-
mal conductivity component can then be obtained by κp =
κtotal − LσT [1,20,21]. To apply the Wiedemann-Franz law, a
correct Lorenz number is needed; people usually use the Som-
merfeld value [1,10] with constant L0 = 2.44 × 10−8 V2 K−2

for simplicity. However, the L = L0 is only valid at the
low-temperature (T � θD, electron-impurity elastic scatter-
ing dominant) or high-temperature region (T � θD, electron-
phonon elastic scattering dominant), and L will deviate from
L0 at the intermediate-temperature region due to the inelastic
electron-phonon scattering [4,22]. Because phonon thermal
conductivity is a relatively small fraction, even a small er-
ror in the Lorenz number can lead to large uncertainty in
the derived phonon thermal conductivity. In order to more
accurately obtain phonon thermal conductivity, a few other
experimental methods have been implemented, including the
alloying method [5,6], superconducting method [5,23], and
magnetothermal method [6,24]. However, these methods are
either very complicated to conduct or limited to extremely
low temperatures. Therefore, the accuracy of experimentally
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measured κp is still limited and even the room-temperature
values are only available for a few metals [5–9].

From the theoretical side, in order to investigate the phonon
thermal conductivity of metals, the general strategy is to
first estimate phonon thermal conductivity considering the
phonon-phonon scattering. Some of the early efforts include
the Leibfried and Schlömann [25] model, the Klemens [4]
model, and the Slack [26] equation. All these analytical
models only consider the phonon-phonon scattering and ne-
glect the phonon-electron scattering. By adding the phonon-
electron scattering rate, Klemens and Williams [10] proposed
the formula of phonon thermal conductivity by assuming that
the long-wavelength phonon modes interact with free elec-
trons and then concluded that the phonon thermal conductivi-
ties of pure metals are in the range of 3–10 W/mK. Stojanovic
et al. [27] developed an analytical expression of phonon ther-
mal conductivity for metal nanostructures with the assumption
of isotropic properties of the material, nearly free electron for
electrons, and Debye approximation [28] for phonons. On the
other hand, the expression of electron thermal conductivity
at low and high temperature for monovalent metals was first
derived by Wilson [29] with the assumption that only the
longitudinal phonon modes interact with electrons. Makinson
and Wilson [1] promoted the expressions of electron thermal
conductivity for both high and low temperatures by assuming
that the phonons with different polarization interact with
electrons to the same extent. These theoretical treatments have
significantly advanced the understanding of thermal transport
in metals.

Recent advances in numerical methods have enabled more
accurate prediction of phonon thermal conductivity in metals.
For example, the molecular dynamic method was used to pre-
dict the phonon thermal conductivity of metals [30]. However,
molecular dynamics has flaws of not only being limited by
the availability and the accuracy of force fields, but also the
neglect of phonon-electron coupling. In contrast, using the
first-principles method, it is possible to extract the electron-
phonon coupling matrix element, and then the mode-resolved
electron and phonon transport properties can be obtained
by combining with the Boltzmann transport equation (BTE)
[31–35]. Therefore, this method can be quite useful to obtain
a reliable phonon thermal conductivity of metals. The first-
principles method can be ideally applied to any material. The
major limitation is that very dense k mesh and q mesh used
for Brillouin zone integration are needed to obtain accurate
results, which requires an extremely high computational cost.
In recent years, only a handful of first-principles calculations
[36–39] were carried out to predict the thermal conductivity
of metals. For example, Jain and McGaughey [36] predicted
the electron and phonon thermal conductivity of Au, Ag,
and Al including the electron-phonon scattering rate by using
dense k-mesh (80 × 80 × 80) and q-mesh (32 × 32 × 32)
interpolation. Wang et al. [37] calculated the phonon thermal
conductivity of metals including aluminum (Al), noble metals
(Au, Ag, Cu), and transition metals (Pt, Ni), but the accuracy
of their calculated values could be limited due to the relatively
coarse mesh of k points (16 × 16 × 16) and q points
(16 × 16 × 16) used in the Brillouin zone integration. In
our previous work [38], the intermetallic compounds NiAl
and Ni3Al were considered. These advances are important in

that one can finally obtain relatively reliable values of phonon
thermal conductivity in metals. However, these first-principles
simulations are scattered to only a few types of metals, and the
data may not be directly comparable due to the difference in
their simulations, for example, the pseudopotential and Bril-
louin zone integration technique. Therefore, a comprehensive
analysis of the phonon thermal conductivity in different types
of metals is highly desirable in order to obtain more general
conclusions of heat conduction in metals.

In this work, a series of first-principles calculations are car-
ried out to predict the mode-dependent electron and phonon
thermal conductivity of 18 different metals, which include
noble metals, alkali-earth metals, transition metals, transition-
intermetallic compounds (TICs) and noble-intermetallic com-
pounds (NICs). The phonon thermal conductivities are calcu-
lated by considering both phonon-phonon (p-p) and phonon-
electron (p-e) interactions, and the impact of phonon-electron
scattering on the phonon thermal conductivity is carefully
discussed. In addition, the electron thermal conductivity is
evaluated by considering electron-phonon (e-p) scattering and
the Lorenz numbers, as well as the mean free paths for both
phonons and electrons of all 18 metals.

II. METHODS AND SIMULATION DETAILS

A. Methods

1. Phonon thermal conductivity

Combining the Boltzmann transport equation and Fourier’s
law [40], the phonon thermal conductivity tensor can be
calculated as

καβ
p =

∑
λ

cv,λv
α
λv

β

λ τ
p
λ , (1)

where λ = (q, ν ) denotes the phonon mode with polarization
ν and wave vector q, cv,λ is the volumetric specific heat,
vα

λ and v
β

λ are the α and β component of the phonon group
velocity vector vλ, and τ

p
λ is the phonon relaxation time. The

phonon volumetric specific heat can be obtained by using
the Bose-Einstein statistics as cv,λ = h̄ωλ

V
∂nλ

∂T , where nλ is the
Bose-Einstein distribution function and V is the volume of
the primitive cell. The group velocity can be obtained by
vλ,α = ∂ωλ

∂q . The phonon relaxation time can be obtained us-
ing Matthiessen’s [41] rule as 1/τ

p
λ = 1/τ

pp
λ + 1/τ

pe
λ , where

1/τ
pp
λ denotes the p-p scattering rate which is related to

the three-phonon scattering matrix element [41] and 1/τ
pe
λ

denotes the p-e scattering rate which is related to the e-p
scattering matrix element [33,42].

The p-p scattering rate due to three-phonon scattering is
given by Fermi’s “golden rule” (FGR) [43] as

1

τ
pp
λ

= π h̄

16N

∑
λ1λ2

∣∣Vλλ1λ2

∣∣2{(
nλ1 + nλ2 + 1

)
δ
(
ωλ − ωλ1 − ωλ2

)
+ (

nλ1 − nλ2

)[
δ
(
ωλ + ωλ1 − ωλ2

)
− δ

(
ωλ − ωλ1 + ωλ2

)]}
, (2)

where N is the total number of phonon modes. δ is the
Dirac delta function, which is approximated by a Gaussian
or Lorentzian function [36] in practice. The term Vλλ1λ2 is the
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three-phonon scattering matrix element, which is related to
the third-order force constants [40].

The p-e scattering can also be obtained from FGR [43].
Under the relaxation time approximation, the scattering rate
of phonon mode λ is

1

τ
pe
λ

= 2π

h̄

∑
k,i, j

∣∣gλ
jk+q,ik

∣∣2
( fik − f jk+q)δ(εik − ε jk+q + h̄ωλ),

(3)

where g is the e-p interaction matrix element, f is the Fermi-
Dirac distribution function, k is the electron wave vector, i
and j are band indices of the electron, ε is the energy of
the electron, and ω is the phonon frequency. The e-p matrix
element which describes an event where an electron at initial
state |i, k〉 is scattered to | j, k + q〉 by a phonon mode λ =
(q, ν ) is defined as [33]

gλ
jk+q,ik =

√
h̄

2ωλ

〈ψ jk+q|∂Uλ|ψik〉, (4)

where ψ is the ground-state Bloch wave function and ∂Uλ

denotes the first-order derivative of the Kohn-Sham potential
with respect to the phonon displacement. In general, Eq. (3)
can be further approximated because of the much smaller
energy of phonons than electrons, which is expressed as [37]

1

τ
pe
λ

≈ 2π
∑
k,i, j

∣∣gλ
jk+q,ik

∣∣2 ∂ f (εik, T )

∂ε
δ(εik − ε jk+q + h̄ωλ)ωλ,

(5)

where ∂ f /∂ε is the “Fermi window” that peaks at the Fermi
level.

2. Electron thermal conductivity

Combining the BTE and Onsager relations [43], the elec-
tron transport properties can be obtained as

σαβ = −e2ns

V

∑
ik

∂ fik

∂ε
vα

ikv
β

ikτik, (6)

[σS] = − ens

V T

∑
ik

(εik − μ)
∂ fik

∂ε
vα

ikv
β

ikτik, (7)

Kαβ = − ns

V T

∑
ik

(εik − μ)2 ∂ fik

∂ε
vα

ikv
β

ikτik, (8)

where σαβ is the electrical conductivity and Sαβ is the Seebeck
coefficient of 3 × 3 tensors. Kαβ is related to the electron
thermal conductivity κe = K−SσST , where T is the temper-
ature. The summation in these three equations is over all the
electrons enumerated using electronic wave vector k and band
index i. The e is the elementary charge, ns is the number of
electrons per state, V is the volume of the primitive cell, fik is
the Fermi-Dirac distribution, εik is the electron energy, μ is the
chemical potential, vik = 1

h̄
∂εik
∂k is the electron velocity, α and

β denote the directional components, and τik is the electron
transport relaxation time. The electron transport relaxation
time, limited by e-p scattering, can be obtained by considering

the e-p interactions as [43]

1

τik
= 2π

h̄

∑
j

∑
λ

∣∣gλ
jk+q,ik

∣∣2{(nλ+ f jk+q)δ(εik+h̄ωλ−ε jk+q)

+ (nλ + 1 − f jk+q)δ(εik − h̄ωλ − ε jk+q)}. (9)

3. Analytical models

Three-phonon scattering strength Vλλ1λ2 in Eq. (2) is quite
nontrivial. In order to obtain an expression of κp, Klemens
[4] derived a formula of Vλλ1λ2 by generalizing the result
for long-wavelength phonons to all phonon modes, in which
the Debye-like dispersion and ignorance of phonon branch
restrictions were assumed. The approximation equation of
Vλλ1λ2 is as follows [4,44]:

∣∣Vλλ1λ2

∣∣ = B
MγG√

N

ωλωλ1ωλ2

vg

√
h̄3

M3ωλωλ1ωλ2

, (10)

where B is a constant number, M is the total mass of atoms in
the unit cell, γG is the average Grüneisen parameter, and vg is
the phonon group velocity in the Debye model. Although this
estimation simplifies the complicated term, it is still difficult
to calculate the summation in Eq. (2) due to the Dirac delta
function. In order to solve this issue, Leibfried [25] used
the inverse of the Debye frequency 1/ωD to approximate
the Dirac delta function. With these approximations, the
p-p scattering rate can by approximated [4,10] as 1/τ pp =
Bγ 2

Gvg(kBT /μa3)(ω/ωD)2, where kB is the Boltzmann con-
stant and μ is the shear modulus. The formula of phonon
thermal conductivity which only considers p-p scattering can
be written as follows [4,10]:

κ pp
p = 3.22

Bγ 2
G

(
kBθD

h̄

)3 M̄a

T
, (11)

where θD is Debye temperature, M̄ is average atomic mass,
a is the cube root of unit cell volume, and T is temperature.
The uncertainties of this model are reflected in an uncertain
numerical coefficient of B. Leibfried and Schlömann [25] give
B = 0.87, while Klemens and Williams [10] give B = 2. It
should be noted that there exist some debates about the value
of B. Julian [45] claimed that the value given by Leibfried
and Schlömann was underestimated by a factor of 0.5 due
to a numerical error, which means Julian gave a corrected
value of B = 1.74. Furthermore, Julian [45] also tried to fit the
coefficient of B using Grüneisen parameters. By using Julian’s
fitting parameters, Slack [26] presented the expression for the
phonon thermal conductivity (only p-p scattering) as follows:

κ pp
p = 0.849 × 3 3

√
4

20π3
(
1 − 0.514γ −1

G + 0.228γ −2
G

)(
kBθD

h̄

)2 kBM̄a

h̄γ 2
G

.

(12)

In general, only considering p-p scattering to determine
the phonon thermal conductivity in metals is not accurate
due to the importance of phonon-electron scatterings. How-
ever, the phonon-electron scattering strength is very compli-
cated as shown in Eq. (3). In order to obtain the expres-
sion for the phonon-electron scattering rate corresponding
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to a phonon relaxation process, the electrons are treated
as free electrons of Fermi energy E f and Fermi velocity
v0 to interact with phonons and then the phonon-electron
scattering rate can be written as the form [4,10] 1/τ pe =
π/3(vg/v0)(neC2

peω/μa3E f ), where ne is the number of elec-
trons per atom. Cpe is the phonon-electron interaction pa-
rameter which has a magnitude comparable to E f [10,22].
Although the terms have been simplified, the values of them
in the approximated equations are still difficult to determine,
such as Cpe. With the help of these approximated relaxation
time terms, Klemens and Williams [10] gave the phonon
thermal conductivity considering both p-p and p-e scattering
schemes as follows:

κ pp+pe
p = κ pp

p

[
1 − ωi

ωD
ln

(
ωD

ωi
+ 1

)]
, (13)

where ωi = ωD(vg/v0)(neπ/3Bγ 2
G)(C2

pe/kBT E f ). With further
simplification, we find that ωi/ωD equals τ pp/τ pe with the
above approximated relaxation time terms of τ pp and τ pe. It
should be noted that the phonon thermal conductivity calcu-
lated by using these analytical formulas will be compared with
the first-principles calculations, which will help us understand
the accuracy of these approximated models.

B. First-principles calculations

The first-principles calculations including density func-
tional theory (DFT) and density functional perturbation theory
(DFPT) are carried out using the QUANTUM ESPRESSO package
[46] to predict the phonon and electron thermal transport
in these metals by considering p-p and p-e scatterings. In
p-p scattering rate calculations, the second-order interatomic
force constants (2nd IFCs) are obtained using DFPT and the
3rd IFCs are obtained using the finite-difference supercell
methods in which the forces are extracted from the self-
consistent field calculation of displaced supercell configu-
rations. In order to calculate the 3rd IFCs, the supercell is
created by using the THIRDORDER.PY package [47]. The size of
supercell and nearest neighboring (NN) atoms are provided in
Sec. S2 of the Supplemental Material (SM) [48]. The phonon
thermal conductivity by considering different NN atom cut-
offs in 3rd IFCs is studied and the convergence calculation is
shown in Sec. S4.1 of the SM [48]. In the p-e scattering rate
calculations, the phonon perturbation is first calculated using
DFPT as implemented in QUANTUM ESPRESSO [46] and then
the e-p scattering matrix element is calculated in ELECTRON-
PHONON WANNIER (EPW) package [49]. The e-p scattering
matrix element is initially obtained on coarse electron and
phonon wave-vector grids and then interpolated to denser
electron and phonon wave-vector grids using the maximally
localized Wannier functions [50] basis as implemented in EPW

[49]. The energy window used in the electron-phonon matrix
calculations is set as 1.5 eV. The denser meshes of wave vector
for calculating the e-p scattering rate are listed in Sec. S3
of the SM [48]. In these calculations, the norm-conserving
pseudopotentials [51] are used. The exchange and correlation
(XC) functional is treated by local density approximation
(LDA) [52] or generalized gradient approximation (GGA)
[53] in our calculations. The choice of XC functional depends

on the material, and it is determined by searching the literature
with suggested XC functional for the corresponding material.

It should be noted that the following factors may have
effects on the predicted values of thermal conductivity and
electrical conductivity from first-principles calculations: (1)
pseudopotentials used in DFT calculations [37], (2) the num-
ber of k and q meshes used in the interpolation process during
electron-phonon scattering rate calculations [36], and (3) the
method such as the relaxation time approximation (RTA) or
iterative scheme used for calculating the thermal conductivity
[54]. Here, we choose the pseudopotentials that ensure the
DFT calculated electrical conductivity matches well with the
experimental values. We also investigated the effect of k and
q meshes on the electrical conductivity and electron thermal
conductivity as shown in Secs. S4.2 and S4.3 in the SM
[48], and then the k and q meshes were finally determined as
presented in Table S2 of Sec. S3 in the SM [48] based on the
balance of accuracy and computational cost. In addition, we
use the RTA method which can guarantee the denser q mesh
used in three-phonon scattering rate calculations. Actually,
it has been reported that the difference of the calculated
electrical conductivity between the momentum-RTA and the
iterative method is almost negligible for Al [54], and Ma
et al. [55] found the momentum-RTA method can match the
iterative method well at intermediate and high temperatures.
Besides, such method was also widely used to predict the elec-
tronic thermal conductivity of other metals [27,36]. Therefore,
it should be proper to employ the RTA method to predict the
electron thermal conductivity in the present work.

III. RESULTS AND DISCUSSION

A. Electrical conductivity, and electron and phonon
thermal conductivity

By implementing the first-principles calculations, the elec-
trical conductivity σ , and phonon κp and electron κe thermal
conductivity are obtained as shown in Table I. It should be
mentioned that the spin-orbital coupling (SOC) effect has
been considered in the heavy metals such as Ni, Pt, Pd, Co,
Ti, Mn, CoAl, and TiAl, in which the Pt is also used as an
example to analyze the SOC and noSOC effect on the electri-
cal conductivity as shown in Sec. S5 of the SM [48]. First, we
can see that the predicted σ , in general, agree well with ex-
perimental data [10,22,56–60]. The difference is in the range
of 2%–31%, with most within 15%, which is acceptable.
We can also see that the DFT predicted κDFT

total = κe + κp at
room temperature agree well with experimental values κ

Expt.
total

[10,22,56–60] as presented in Table I. To further validate our
calculations, the DFT optimized lattice constants and phonon
dispersion curves are compared with the experimental values,
and the DFT predicted band structures are compared with
the Wannier interpolated band structures. We find that they
are in good agreement, as shown in Table S1 and Sec. S7 of
the SM [48]. All of these comparisons and validations provide
confidence for us to further analyze e-p coupling strength and
its effect on phonon thermal conductivity.

From Table I, we note that the phonon thermal conductivity
ranges from 2 to 18 W/mK. The ratio of phonon thermal
conductivity to total thermal conductivity κp/κtotal can be
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TABLE I. The DFT predictions of electrical conductivity σ and total thermal conductivity κDFT
total = κe + κp are compared to experimental

values at room temperature [10,22,56–60]. κe denotes for electron thermal conductivity, κp for phonon thermal conductivity, and κ
Expt.
total for

experimental value. L0 = π 2k2
B/(3e2) = 2.44 × 10−8 V2 K−2 is the Sommerfeld value of the Lorenz number [10], L = κe/(σT ), where T is

temperature.

σ κp κe κDFT
total κ

Expt.
total κp/κ

DFT
total

(×107 �−1 m−1) (W/mK) (W/mK) (W/mK) (W/mK) (%) L
L0

Material DFT Expt. DFT DFT DFT Expt. DFT DFT

Ag 6.26 6.21 5.69 450.86 456.55 436.00 1.25 0.98
Au 3.63 4.50 2.80 273.45 276.25 318.00 1.01 1.03
Cu 5.27 5.78 17.42 361.32 378.74 402.00 4.60 0.94
Al 3.37 4.12 8.95 232.53 241.49 237.00 3.71 0.94
Mg 2.43 2.30 7.15 178.20 185.35 153.00 3.86 1.00
Pt 1.23 1.02 6.49 89.75 96.24 71.90 6.74 1.00
Pd 0.82 1.03 12.51 76.60 89.11 71.70 14.04 1.28
Ni 1.51 1.60 15.33 84.53 99.86 93.00 15.35 0.76
Ti 0.38 0.25 5.32 25.31 30.63 22.30 17.37 0.91
Co 1.16 1.67 12.99 78.65 91.65 99.00 14.18 0.92
Mn 0.08 0.07 3.02 4.98 8.00 7.80 37.74 0.86
NiAl 0.86 1.02 6.02 63.89 69.91 76.00 8.61 1.02
Ni3Al 0.43 0.30 4.72 31.95 36.66 28.50 12.86 1.02
TiAl 0.10 0.13 5.17 7.34 12.51 11.50 41.32 0.96
FeAl 0.13 0.18 3.24 8.49 11.72 12.00 27.61 0.90
CoAl 0.59 0.71 4.83 40.85 45.67 37.00 10.57 0.95
Cu3Au 1.66 1.85 1.89 118.36 120.25 157.20 1.57 0.98
CuAu 1.83 2.50 2.32 132.46 134.78 167.00 1.72 0.99

smaller than 2% or as large as 40% at 300 K. Eight out of 18
metals have phonon contributions of more than 10%, which
is non-negligible. Furthermore, κp can play a more important
role in the thermal conductivity of metallic nanostructure due
to the significant reduction of κe at the nanostructure [27].
Therefore, our calculation results show the necessity of first-
principles investigation on the phonon thermal transport in
metals.

In addition, the predicted κp including both p-p and p-e
scattering from first principles are compared with the pre-
dictions by the Klemens model [10] [Eq. (13)], and the
comparisons are shown in Fig. 1. It should be noted that
the average relaxation times of τ pp and τ pe calculated from
first principles were used in Eq. (13). We can see that the
Pearson correlation between the first-principles prediction and
the theoretical Klemens prediction is 0.25. It indicates that
the Klemens model fails to accurately predict the phonon
thermal conductivity. This is not surprising since the Kle-
mens model was derived based on the assumption of Debye
approximation, free electrons interacting with phonons, and
the long-wavelength phonons [10]. Therefore, the previous
phonon thermal conductivity estimations of metals from the
Klemens model have large uncertainty and must be used with
care.

B. Phonon thermal conductivity with only p-p scattering

The above calculations provide relatively reliable data for
the phonon thermal conductivity of different types of metals.
To gain deeper insights into the phonon thermal conductivity
of metals, further analysis is necessary. As shown in Eqs. (2)

and (3), the phonon thermal conductivity in metals is affected
by both p-p and p-e scattering. Therefore, we first investigate
the phonon thermal conductivity only considering p-p scatter-
ing, and then further consider electron-phonon coupling effect
on the phonon thermal conductivity.

The first-principles calculated phonon thermal conductivi-
ties κ

pp
p (only p-p scattering is considered) at 300 K are shown

FIG. 1. Phonon thermal conductivity κp predictions at a temper-
ature of 300 K from first-principles calculations and the Klemens
model [10], which include both p-p and p-e scattering. The dashed
line represents ±30% error.
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FIG. 2. Phonon thermal conductivity κ pp
p of noble, alkali earth,

transition, TICs, and NICs at 300 K. Here, only p-p scattering is
considered in the calculation of phonon thermal conductivity.

in Fig. 2. The values of κ
pp
p are within the range of 2–30

W/mK. While most of the metals have κ
pp
p smaller than or

approaching 10 W/mK, there are a few exceptions, including
Cu, Pd, Ni, and Co. These are all elemental metals with
relatively small atomic masses. Except for Cu which is a noble
metal, all others are transition metals. In order to make further
analysis of the phonon thermal conductivity, one can see that
the phonon thermal conductivity from Eq. (1) is related to both
group velocity and relaxation time. Therefore, we plot the
mode-dependent p-p scattering rate 1/τ

pp
λ and phonon group

velocity v
ph
λ for a few representative materials for comparison,

including Ag (noble), Mg (alkali earth), Ni (transition), TiAl
(TICs), and CuAu (NICs), as shown in Fig. 3. We can see
that the p-p scattering rates for these metals are comparable
in Fig. 3(a). However, the phonon group velocity of transition
metal (Ni) is larger than that of noble metal (Ag) and it is also
larger for TICs (TiAl) compared to NICs (CuAu) as shown in
Fig. 3(b). From the comparison, we can see that the phonon
group velocity is the dominant factor in causing the differ-
ences in phonon thermal conductivity. On the other hand, it
is well known that the materials with smaller atomic mass
and stronger bonding generally have higher phonon group
velocity. Therefore, it is not surprising that these materials
(like Pd, Pt, Ti, Ni, Co, Mn) have relatively higher κ

pp
p than

that of noble metals (like Ag, Au), since transition metals
generally have stronger bonding [61] as compared to other
metals. This statement is supported by the binding energy of
these materials as shown in Table II. In addition, by comparing
the phonon group velocity and p-p scattering rate of the metals
with that of a good semiconductor of silicon (∼150 W/mK) as
shown in Fig. 3, we find that the metals have much larger p-p
scattering rate and lower phonon group velocity than silicon.
In fact, this is because covalent bonding in silicon is usually
stronger than the metallic bonding in metals [61].

Furthermore, in the analytical models, the strength of p-p
scattering and phonon group velocity are usually quantified
by the Grüneisen parameter γG and Debye temperature θD,

FIG. 3. (a) Phonon-phonon scattering rate and (b) phonon group
velocity for Ag (noble), Mg (alkali earth), Ni (transition), TiAl
(TICs), CuAu (NICs), and Si (semiconductor) at 300 K.

respectively. Here, we also present the predicted values of γG

and θD, as shown in Table II, and the values agree well with
experimental values (see SM, Sec. S6 [48]). The variation
of κ

pp
p with γG and θD are also plotted as shown in Fig. 4.

Overall, we can see that κ
pp
p is larger with higher θD and

smaller γG. This is also consistent with the general theory
for phonon thermal conduction, which says that the larger
phonon group velocity (strong bonding with high θD) and
smaller p-p scattering rate (weak anharmonicity with small
γG) result in larger phonon thermal conductivity. The Pearson
correlation coefficients between κ

pp
p and the parameters are

0.26 and 0.12 for θD and γG, respectively, indicating that the
group velocity is more important in determining the phonon
thermal conductivity, but neither of the two parameters can be
directly used to evaluate κ

pp
p .

Since classical thermal conductivity models were widely
used to estimate the phonon thermal conductivity of metals
[4,62], we can also check their accuracy. The predicted κ

pp
p

from first principles are compared with the predictions by the

144306-6



COMPREHENSIVE FIRST-PRINCIPLES ANALYSIS OF … PHYSICAL REVIEW B 100, 144306 (2019)

TABLE II. DFT predicted values of Debye temperature θD, Grüneisen parameter γG, κ pp
p (only p-p scattering is considered), κ pp+pe

p (both
p-p and p-e scattering are considered), and reference data [27,36,37] for κ pp+pe

p . DFT predicted e-p coupling constant λep and experimental
values [12,64–66] of λep. DFT predicted binding energy of some elemental metals.

Phonon thermal conductivity e-p Coupling
Debye (K) Grüneisen parameter Binding energy (eV) at 300 K (W/mK) constant

θD γG κ pp
p κ pp+pe

p κ pp+pe
p λep λep

Material (DFT) (DFT) (DFT) (DFT) (DFT) (Literature) (DFT) (Expt.)a

Ag 228.18 2.69 2.61 6.03 5.69 9.3,b 5.2,c 4.0d 0.13 0.13
Au 184.17 3.00 3.38 3.05 2.80 5.0,b 2.6,c 2.0d 0.18 0.15
Cu 335.4 1.94 4.85 19.49 17.42 22.2,b 16.9c 0.14 0.14
Al 397.26 2.45 3.53 10.02 8.95 21.1,b 5.8,c 6.0d 0.43 0.43
Mg 343.35 1.71 4.82 9.27 7.15 0.25 0.27
Pt 243.48 1.58 5.70 8.67 6.49 8.3,b 5.8c 0.58 0.66
Pd 275.13 1.62 5.18 19.62 12.51 0.45 0.41
Ni 437.16 1.53 5.21 27.79 15.33 42.2,b 23.2c 0.36 0.31
Ti 380.54 1.12 5.18 11.92 5.32 0.30 0.38
Co 353.83 1.53 5.99 20.60 12.99 0.56
Mn 352.09 1.17 8.14 6.17 3.02 0.46
NiAl 349.45 1.86 12.31 6.02 0.29
Ni3Al 321.72 1.88 7.78 4.72 0.30
TiAl 337.24 1.23 7.88 5.17 0.57
FeAl 338.01 1.32 7.25 3.24 0.50
CoAl 379.66 1.46 9.81 4.83 0.46
Cu3Au 251.71 2.04 2.37 1.89 0.34
CuAu 228.17 2.03 3.32 2.32 0.31

aReferences [12,64–66].
bReference [27].
cReference [37].
dReference [36].

widely used Klemens model [4] [Eq. (11)] and Slack model
[26] [Eq. (12)], as shown in Fig. 5. It should be noted that the
first-principles calculated Debye temperature and Grüneisen
parameter are used in both the Klemens and Slack models. We
can see that the Pearson correlation between first-principles
prediction and theoretical prediction is only 0.56 and 0.52
for the Klemens and Slack models, respectively, indicating
that these analytical models fail to accurately predict the
phonon thermal conductivity. This is not surprising since
these analytical models generally adopt the Debye approxi-
mation and the long-wavelength assumption is employed in
the Klemens model [10]. Comparing to semiconductors and
dielectrics [44], these models are not reliable for metals,
presumably because they were originally developed for non-
metallic materials [25]. As such, the previous phonon thermal
conductivity estimations from these models [10,27,63] have
large uncertainty and must be used with care.

C. Electron-phonon coupling effect on
phonon thermal conductivity

The p-e scattering is an important scattering term in the
phonon scattering process for metals and it should be rigor-
ously considered. It was believed that the p-e scattering term
makes a relatively small contribution to phonon thermal con-
ductivity at medium-temperature range [10,22,36,37]. How-
ever, such statement cannot be completely supported by our
results. Here, we quantified the reduction (κ pp

p − κ
pp+pe
p )/κ pp

p

of κ
pp
p after including the p-e scattering effect as shown in

Fig. 6 and the data values are also presented in Table II.
The e-p coupling effect on phonon thermal conductivity κ

pp
p

appears to vary strongly with different metals.
To understand how the scattering with electrons affects

the phonon thermal conductivity, we first examine the ex-
pression of p-e scattering rate 1/τ

pe
λ in Eq. (5) to figure

out the determining factors on the strength of p-e scattering
rate. With the summation of the product of |gλ

jk+q,ik|2 and
∂ f (εik,T )

∂ε
δ(εik − ε jk+q + h̄ωλ)ωλ in Eq. (5), we can see that

the strong p-e scattering rate generally comes from three
conditions: (I) high electron density of states around the Fermi
surface, (II) high phonon frequency, (III) large e-p coupling
matrix element. The high electron density of states within the
Fermi window provides more available electron state for e-p
scattering, which results in a stronger e-p interaction. The
strong e-p interaction is manifested by a high e-p coupling
constant λep [31,33] which describes all the possible com-
binations with εik and ε jk+q on the Fermi surface under the
perturbation of phonon with frequency ωλ. In other words, the
satisfaction of conditions I and III makes high λep, but it does
not always ensure large p-e scattering rate. If the material has
high phonon frequencies which equal the energy difference
between ε jk+q and εik states, the δ(εik − ε jk+q + h̄ωλ)ωλ will
be larger.

Based on these theoretical understandings and combining
the data in Fig. 6 and Table II, we can draw the following
conclusions. First, transition metals (Pt, Pd, Ni, Ti, Co, Mn)
have a stronger e-p coupling effect than that of noble metals
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FIG. 4. The phonon thermal conductivity κ pp
p variation with (a)

Debye temperature θD and (b) Grüneisen parameter γG at 300 K.

(Au, Ag, Cu), due to their higher electron density of states
near the Fermi surface (see the electron density of states in
the SM, Sec. S7 [48]), larger e-p coupling constant λep, and
higher phonon frequency (see the phonon dispersion curve in
Sec. S7 of the SM [48]). Second, if the material satisfies only
one of the conditions (high λep or high ωλ), the e-p coupling
effect is generally weaker than that of materials with both
high λep and high ωλ. For example, the TICs (FeAl, CoAl,
NiAl, Ni3Al, TiAl) have both larger λep (>0.2) and higher
phonon frequency ωλ compared to NICs (CuAu, Cu3Au) with
only higher λep but lower ωλ. In other words, TIC atoms are
lighter than NICs and will cause higher phonon frequency as
well as be easier to satisfy condition II under the condition
of comparable λep. This can be further demonstrated by
the mode-dependent electron-phonon coupling matrix |g| as
shown in Fig. 7, in which the |g| of NiAl (TICs) and CuAu
(NICs) are plotted for comparison. It can be seen that the
|g| of NiAl is higher than that of CuAu with comparable
λep (λNiAl

ep = 0.29 and λCuAu
ep = 0.31), which indicates that

the higher phonon frequency of NiAl induces stronger e-p

FIG. 5. Phonon thermal conductivity predictions at a temper-
ature of 300 K from first-principles calculations and theoretical
calculations using the Klemens [10] and Slack models [26], which
only consider the p-p scattering. The dashed line represents ±30%
error.

coupling than CuAu as shown in Fig. 7. Therefore, TICs have
a stronger e-p coupling effect.

Third, the CuAu and Cu3Au have a stronger e-p coupling
effect than that of Cu and Au, which is due to the participation
of optical phonons in the electron-phonon interactions within
CuAu and Cu3Au but no optical phonons in Cu and Au.
This can be explained through the Eliashberg spectral func-
tion α2F (ω) which is generally used to quantify the phonon
frequency contribution to the e-p coupling strength [31]. The
α2F (ω) of CuAu and Cu3Au is plotted as shown in Fig. 8;
we can see that the optical phonon contribution to α2F (ω)
is considerable. This result tells us that the optical phonon
in CuAu and Cu3Au makes a great contribution to the e-p
coupling. In addition, the electron density of states of Al and

FIG. 6. (a) Percentage of the reduction of phonon thermal
conductivity κ pp

p induced by electron-phonon coupling effect.
(b) Electron-phonon coupling constant λep.
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FIG. 7. Electron-phonon coupling matrix of NiAl and CuAu.

the alkali-earth metal (Mg) behave like the density of states of
a free electron, which induces high electron density of states
within the Fermi window (see SM, Sec. S7 [48]). Therefore,
the e-p coupling effects in Al and Mg are stronger compared
to noble metals which have low electron density of states
within the Fermi window although they have comparable ωλ

(see SM, Sec. S7 [48]).

D. Electron and phonon contribution to thermal conductivity

By using the first-principles predicted κe and σ , we calcu-
lated the L at 300 K and compared it with the L0 as shown
in Table I. It can be seen that the deviation between L and
L0 varies between 1% and 17%, which indicates that the

FIG. 8. Variation of Eliashberg spectral function α2F (ω) with
phonon frequency for CuAu and Cu3Au. The gray region represents
the phonon frequency for acoustic phonons and the blue region for
optical phonons. It should be stated that the separating point of the
acoustic and optical phonon is at about 3 THz for both CuAu and
Cu3Au, which is shown in the SM, Sec. S7 [48].

FIG. 9. The percentage of phonon and electron thermal conduc-
tivity contributing to total thermal conductivity for these 18 metals.

general treatment of evaluating electron thermal conductivity
by using L0 should be done carefully even for certain metals.
In addition, we also analyzed phonon and electron contribu-
tion to the total thermal conduction as shown in Fig. 9. We
can see that the phonon contribution can be neglected with
κp/κtotal less than 10% for noble metals, alkali earths and
NICs, but it could be non-negligible for transition and TICs
with κp/κtotal ranging between 10% and 40% though their
absolute values of κp range from 3 to 15 W/mK. Actually,
for noble metals, the e-p scattering is very weak compared
to transition metals, which makes their electrical conductivity
much larger than that of transition metals as seen in Table I.
Therefore, the electron thermal conductivity is high for noble
metals, leading to a relatively much smaller phonon compo-
nent of thermal conductivity. On the other hand, the phonon
component of thermal conductivity in the transition metals
and intermetallic compounds is comparable as discussed in
Sec. III C. Combing these two factors in transition metals
and intermetallic compounds, it is not surprising that the total
thermal conductivity of them is low as seen in Table I and the
phonon component of thermal conductivity is large as seen in
Fig. 9 compared to the noble metals.

E. Electron and phonon mean free path

With the development of nanoelectronic devices [13–17],
metal structures with nanoscale dimension were widely used.
However, the thermal conductivities of nanostructures are
significantly different from their bulk values, and the size
effect generally induces reductions due to the scattering of
electrons and phonons at surfaces and by grain boundaries. In
order to figure out the size effect on the thermal conductivity,
the mean free path (MFP) for both phonons and electrons
was calculated. The MFP denoted by � is a measure of the
distance traveled by a carrier between scattering events and is
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FIG. 10. Average phonon and electron mean free path of 18
metals at 300 K. The inset plot is the comparison of electron MFP
between our calculated values and reference data [27,67].

the product of the magnitude of its velocity and lifetime (e.g.,
for phonon mode λ, �λ = |νλ|τλ).

The average mean free path can have different definitions.
Also, the mean free path for electric conduction and electron
thermal conductivity can be different. Here, since we focus
on thermal conductivity, the average electron and phonon
MFP is defined through the accumulation function (see SM,
Sec. S9 [48]) which describes the contributions of carriers
with different MFPs to thermal conductivity. The final values
of � are extracted at 50% of the thermal conductivity accu-
mulation function and the results are shown in Fig. 10. We
also compare our calculated electron MFPs with the available
reference data [27,67] as shown in the inset of Fig. 10. It
should be noted that the MFP in the inset plot is calculated
with the definition of Gall’s [67] work to make a fair compari-
son. We can see that our calculated values agree well with the
reference data. Importantly, it can be found that the phonon
MFP is within 10 nm for all the 18 metals while the electron
MFP ranges from 5 to 25 nm. The electron MFPs of nobles are
larger than transition metals as expected. In addition, we can
see that the MFPs of electrons are in general larger than that
of phonons, which indicates the electron thermal conductivity
will show a stronger size effect than the phonon thermal
conductivity in metal nanostructures. Furthermore, in order
to understand the function of electron MFP in determining
the electron transport properties, we plot the variation of
electrical conductivity with electron MFPs extracted at 50%
of electrical conductivity as shown in Fig. 11. We can see that
the materials with large electron MFPs generally have high
electrical conductivity and the Pearson correlation between
them is 0.94, which indicates that the transport properties of
electrons are strongly correlated to the electron MFPs. By
using these data, we further give a linear fitting relation with a
slope of 0.4737 (correlation with R2 = 0.43) between electron
MFP (nm) and electrical conductivity (�−1 μm−1) to predict
the electron MFP if the electrical conductivity is known.

FIG. 11. Variation of electrical conductivity with electron MFPs
for 18 metals at 300 K.

IV. SUMMARY

In summary, first-principles calculations are conducted to
predict the mode-dependent thermal properties of 18 metals
including noble metals, transition metals, alkali-earth metals,
noble-intermetallic compounds, and transition-intermetallic
compounds at room temperature. The first-principles pre-
dicted values of thermal conductivity and electrical conductiv-
ity agree well with experimental results. The first-principles
data allow the quantification and the separation of the elec-
tron and phonon contributions to thermal conductivity. We
find that phonon thermal conductivities which only consider
phonon-phonon scattering are within a range of 2–30 W/mK,
in which the phonon group velocity is the dominant fac-
tor of determining the phonon thermal conductivity. The
phonon thermal conductivities become 2–18 W/mK when
the phonon-electron scattering is included, and account for
1%–40% in the total thermal conductivity. Moreover, we find
that the electron-phonon coupling effect on phonon thermal
conductivity in transition metals and intermetallic compounds
is stronger than that of nobles, which is mainly due to the
large electron-phonon coupling constant with a high electron
density of states within the Fermi window and high phonon
frequency. In addition, noble metals have high electron ther-
mal conductivity in the range of 265–476 W/mK mainly due
to weak electron-phonon coupling. Besides, the calculated
Lorenz numbers for all 18 metals show considerable devia-
tions from the Sommerfeld value L0 = 2.44 × 10−8 V2 K−2

in transition metals and TICs. Finally, it is shown that the
MFPs at 50% accumulation function for phonon (within
10 nm) are generally smaller than those of electron (5–25
nm), which yields important insights on size effect in metal
nanostructures.
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