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conductivity and thermal radiative properties
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Phonon scattering plays a central role in the quantum theory of phonon linewidth,

which in turn governs important properties including infrared spectra, Raman

spectra, lattice thermal conductivity, thermal radiative properties, and also signifi-

cantly affects other important processes such as hot electron relaxation. Since

Maradudin and Fein’s classic work in 1962, three-phonon scattering had been

considered as the dominant intrinsic phonon scattering mechanism and has seen

tremendous advances. However, the role of the higher-order four-phonon scattering

had been persistently unclear and so was ignored. The tremendous complexity of the

formalism and computational challenges stood in the way, prohibiting the direct and

quantitative treatment of four-phonon scattering. In 2016, a rigorous four-phonon

scattering formalism was developed, and the prediction was realized using empirical

potentials. In 2017, the method was extended using first-principles calculated force

constants, and the thermal conductivities of boron arsenides (BAs), Si and diamond

were predicted. The predictions for BAs were later confirmed by several independent

experiments. Four-phonon scattering has since been investigated in a range of

materials and established as an important intrinsic scattering mechanism for thermal

transport and radiative properties. Specifically, four-phonon scattering is important

when the fourth-order scattering potential or phase space becomes relatively large.

The former scenario includes: (i) nearly all materials when the temperature is high;

(ii) strongly anharmonic (low thermal conductivity) materials, including most

rocksalt compounds, halides, hydrides, chalcogenides and oxides. The latter

scenario includes: (iii) materials with large acoustic–optical phonon band gaps,

such as XY compounds with a large atomic mass ratio between X and Y; (iv) two-

dimensional materials with reflection symmetry, such as single-layer graphene,

single-layer boron nitride and carbon nanotubes; and (v) phonons with a large
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density of states, such as optical phonons, which are important for Raman, infrared

and thermal radiative properties. Four-phonon scattering is expected to gain broad

interest in various technologically important materials for thermoelectrics, thermal

barrier coatings, thermal energy storage, phase change, nuclear power, ultra-high

temperature ceramics, infrared spectra, Raman spectra, radiative transport, hot

electron relaxation and radiative cooling. Four-phonon scattering has been, and will

continue to be, established as an important intrinsic phonon scattering mechanism

beyond three-phonon scattering. The prediction of four-phonon scattering will

transition from a breakthrough to a new routine in the next decade.

2.1 Overview

Phonon scattering plays a central role in the quantum theory of phonon linewidth,

thermal conductivity and thermal radiative properties. For over half a century,

three-phonon scattering has been considered as the dominant intrinsic phonon

scattering mechanism. Starting from the third-order anharmonic Hamiltonian and

Fermi’s golden rule (FGR), Maradudin and Flinn [1], Maradudin and Fein [2], and

Maradudin et al [3] derived an anharmonic lattice dynamics (ALD) method to

predict intrinsic three-phonon scattering rates in solids. Debernardi et al [4]

combined ALD and first-principles methods based on the density functional theory

(DFT) to predict three-phonon scattering rates and linewidths for carbon, silicon

and germanium, and the results agreed well with Raman spectra. This work was

followed by the first-principles prediction of the phonon linewidths of a variety of

materials [5–8]. More recently, Broido et al combined first-principles calculations of

three-phonon scattering rates and the phonon Boltzmann transport equation (BTE)

and enabled first-principles prediction of thermal conductivity [9]. Many studies

have since been conducted on the thermal transport based on three-phonon

scattering, and the calculated thermal conductivity (κ) has found incredible agree-

ment with measured κ values for a variety of systems [9–15]. First-principles

calculations of three-phonon scattering rates of zone-center optical phonons have

also been combined with the Lorentz oscillator model to predict the thermal

radiative properties of polar materials [16].

However, a persistent fundamental question remained: what is the role of four-

phonon and higher-order scattering? The observations of a series of experiments

deviated from the three-phonon scattering theory, but no accepted explanation had

emerged. In the early years, Joshi et al found in experiments that the thermal

conductivity of silicon at a high temperature decreases more rapidly than the 1/T trend

as would be given by the three-phonon scattering theory, and they assumed the

existence of four-phonon scattering to be responsible for this behavior [17]. However,

Ecsedy and Klemens made calculations and concluded that this trend could not be

due to four-phonon scattering [18]. The optical phonon linewidths based on three-

phonon theory often show large underestimation for materials with significant

infrared applications such as cubic BN (c-BN), 3C-SiC, GaN, GaP, GaAs, InAs

and AlAs at high temperature or even room temperature (RT) [4, 19, 20]. Moreover,

first-principles methods overestimated the measured thermal conductivities of a

Nanoscale Energy Transport

2-2



number of materials [10, 11, 21–23]. For example, while some predictions gave

reasonable accuracy with measured data at low temperature, they over-predicted

significantly at higher temperature [10], diminishing the predictive power for appli-

cations such as thermal barrier coatings and high temperature thermoelectrics. Even

at RT, such deviations could become quite large for some technologically important

materials [11, 21–23]. Such deviations had often been attributed to defects and

impurities in the materials, and the role of four-phonon scattering was unclear and

ignored, largely due to the lack of theoretical formalism and computational power

needed to treat four-phonon scattering. Recent explorations of four-phonon scattering

included checking the phase space [24] and examining its significance from molecular

dynamics [25]. Direct and quantitative prediction of four-phonon scattering rates was

greatly desired to uncover the physics but was not available.

In 2016, Feng and Ruan [26] developed the four-phonon scattering formalism and

mitigated the challenges in computation, and rigorously predicted the four-phonon

scattering rates for several benchmark materials such as diamond, silicon, germa-

nium and solid argon. Based on empirical interatomic potentials, they predicted

strong four-phonon scattering rates in silicon and germanium at high temperatures

and in argon even at low temperatures. Their four-phonon scattering results have

explained well the discrepancy in phonon scattering rates between the perturbation

theory of three-phonon scattering and molecular dynamics (MD) using the same

empirical potentials, because MD naturally includes all the orders of anharmonicity.

The inclusion of four-phonon scattering makes the ALD and MD consistent with

each other, and pushes a step forward towards the ‘unification’ of these simulation

methods of phonon and thermal transport.

In 2017, Feng et al [27] extended the method by calculating the fourth-order force

constants from DFT instead of empirical interatomic potentials and predicted a

significant impact of four-phonon scattering on the thermal conductivity of diamond

and silicon at high temperatures and BAs even at RT. Their predictions for Si agree

well with early experiments, and those for BAs were later verified by three

independent experimental works published in 2018 that directly measured the

thermal conductivity of high-quality single-crystal BAs [28–30]. Since then, the

prediction of the large impact of four-phonon scattering has been accepted, and

more investigations are going on. For example, its significance was recently found in

two-dimensional material graphene [31] and other strongly anharmonic materials

such as PbTe [32] and NaCl [33].

Compared to three-phonon scattering, the most apparent complexity of four-

phonon scattering is its large phase space. As illustrated in figure 2.1, in a three-

phonon process, a phonon mode λ can either split into two other modes

(λ λ λ→ +1 2) or combine with one other mode to a new one (λ λ λ+ →1 2). In a

four-phonon process, it can split into three other modes (λ λ λ λ→ + +1 2 3), generate

two new modes by absorbing one (λ λ λ λ+ → +1 2 3), or convert to a new mode by

absorbing two (λ λ λ λ+ + →1 2 3). All these processes must obey the conservation

law of energy and quasi-momentum. The number of possible combinations of four-

phonon modes that satisfy the conservation laws is usually several orders larger than
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that of three-phonon processes. For example, in silicon, by using a 16 × 16 × 16 q-

mesh, a phonon mode can find ∼103 possible combinations with other modes for

three-phonon processes, while it can find 107–108 possible combinations for four-

phonon scattering. Therefore, four-phonon scattering is less dependent on the

dispersive nature of phonon frequencies compared to three-phonon scattering.

Feng et al’s works [26, 27, 31] have established that four-phonon scattering is

non-negligible with two origins: strong scattering potential and large scattering

phase space. The former presents as strong anharmonicity, as found in strongly

anharmonic materials, i.e. most low thermal conductivity materials such as solid

argon [26], PbTe [32] and NaCl [33]. Even for weakly anharmonic materials with

high thermal conductivity, such as diamond and silicon, the anharmonicity could

become strong when the temperature is high. For example, four-phonon scattering

reduces the thermal conductivity of silicon by 30% at 1000 K [26, 27].

Quantitatively, four-phonon scattering rates scale with temperature quadratically

(∼T 2), which is one order faster than three-phonon scattering. Regarding the

scattering phase space, the four-phonon process generally has a several orders

larger phase space than three-phonon scattering since the conservation laws can

easily be satisfied. This effect is reflected most significantly in higher-frequency

phonons including, in particular, optical phonons, which have a large density of

states and thus four-phonon scattering phase space. In addition, the four-phonon

scattering can be exceptionally important in systems where three-phonon processes

Figure 2.1. Three- and four-phonon scattering diagrams. (a) Three-phonon splitting and combination

processes. (b) Four-phonon splitting, redistribution and combination processes. The shaded rectangles

represent the first Brillouin zone (BZ). The phonon momentum is ℏq. The processes with momentum

conserved are normal processes. The others with momentum non-conserved are Umklapp processes, in which

the resulting phonons are folded back by reciprocal lattice vectors R. Reproduced with permission from [27].

Copyright 2017 the American Physical Society.
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have a suppressed phase space, either due to a large acoustic–optical phonon band

gap or the reflection symmetry in 2D materials. One example of the former is BAs, a

quite harmonic crystal, for which neglecting four-phonon scattering leads to 57%

over-prediction in thermal conductivity at room temperature [27]. The optical

phonon relaxation times in these materials with large acoustic–optic phonon band

gaps are exceptionally suppressed by four-phonon scattering [27]. Single-layer

graphene is an example of the latter, and the four-phonon scattering for the flexural

acoustic (ZA) mode was predicted to be suppressed less than the three-phonon

scattering by reflection symmetry [31], although the prediction still needs exper-

imental validation.

Beyond the single-mode relaxation time approximation (SMRTA or RTA), Feng

and Ruan [31] derived the exact solution to phonon BTE that incorporates the four-

phonon scattering’s phase space into the iteration in the calculation of thermal

conductivity. Due to the large phase space of four-phonon scattering, the iteration is

extremely computationally expensive. Fortunately, they found that four-phonon

scattering is usually dominated by the Umklapp process even in the materials where

three-phonon scattering is dominated by the normal process [26, 27], indicating that

in order to save time it is not necessary to include the four-phonon’s phase space in

the iterative scheme in these materials. However, for some materials such as

graphene where the four-phonon scattering is dominated by the normal process,

the iterative scheme involving four-phonon phase space is crucial to the thermal

conductivity prediction [31].

The remainder of this chapter is organized as follows. In section 2.2, the four-

phonon scattering formalism is derived in the context of solving phonon BTE. For

generality, multiple scattering mechanisms including three-phonon, four-phonon,

phonon–impurity and phonon–boundary scatterings are included in the solution

since they are coupled together with each other in the exact solution that involves the

iteration of the phase spaces of these scattering processes. The SMRTA solution is

presented at the zeroth iteration. In section 2.3, the significance of four-phonon

scattering induced by large scattering potential is presented. For weakly anharmonic

materials, the large four-phonon scattering potential could be induced by raising the

temperature. For strongly anharmonic materials, the strong four-phonon scattering

potential is caused by the intrinsic strongly anharmonic interatomic bonding, even at

low temperatures. In section 2.4, the significance of four-phonon scattering induced

by large scattering phase space is presented. This is either induced by restricted three-

phonon scattering phase space or a large density of states (DOS). The former

includes certain groups of materials such as those with large acoustic–optical

phonon band gaps and two-dimensional materials with reflection symmetry. The

latter is remarkably represented in optical phonon modes, which often show high

four-phonon scattering rates due to large DOS. The prediction of zone-center optical

phonon linewidth and thermal radiative properties is extensively presented here. In

section 2.5, we supplement some discussion of a few important issues related to four-

phonon scattering such as the frequency scaling law, the Umklapp scattering and the

three-phonon scattering to the second order. In section 2.6, a brief summary is

provided and an outlook of future research directions is presented.
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2.2 Formalism of four-phonon scattering

In this section, we derive the solution to the phonon BTE that includes three-

phonon, four-phonon, phonon–impurity and phonon–boundary scattering. The

derivation is extensively presented in [26, 31], and it is summarized here again.

The phonon BTE [34–36]

· ∇ =
∂

∂
λ λ

λ
n

n

t
v (2.1)

s

describes the balance of the phonon population between diffusive drift and collision.

λ labels the phonon mode νq( , ), with q representing the wave vector and ν

representing the dispersion branch, λv is the group velocity, and nλ is the phonon

occupation number. Due to a small temperature gradient, nλ has a small derivation
′λn from its equilibrium Bose–Einstein distribution ω= ℏ −λ λ

−n k T[exp( / ) 1]0
B

1 so

that ′= +λ λ λn n n0 . By assuming that ′λn is independent of temperature [35],

∂ ∂ ≃ ∂ ∂λ λn T n T( / ) ( / )0 , we have

· ∇
∂

∂
=
∂ ′

∂
λ

λ λT
n

T

n

t
v (2.2)

s

0

considering ∇ = ∂ ∂ ∇λ λn n T T( / ) .

The scattering term ′∂ ∂ ∣λn t( / ) s is the decay rate of the perturbation ′λn due to the
scattering processes of the mode λ, including the three-phonon processes λ λ λ→ +1 2

and λ λ λ+ →1 2, the four-phonon processes λ λ λ λ→ + +1 2 3, λ λ λ λ+ → +1 2 3 and

λ λ λ λ+ + →1 2 3, and the isotope and boundary scattering processes λ λ→ 1. The

scattering rates of these processes are given by the scattering probabilities, P, which

are determined by FGR:

π
δ=

ℏ
〈 ∣ ˆ ∣ 〉 −→P f H i E E

2
( ), (2.3)i f i f

2

where ∣ 〉i and ∣ 〉f are the initial and final quantum states, respectively. The net
transition rate from ∣ 〉i to ∣ 〉f is, therefore, written as

π
δ− =

ℏ
〈 ∣ ˆ ∣ 〉 − 〈 ∣ ˆ ∣ 〉 −→ → ( )P P f H i i H f E E

2
( ). (2.4)i f f i i f

2 2

The initial and final quantum states depend on scattering processes. For example,

for the three-phonon process λ λ λ→ +1 2, the initial and final quantum states are
∣ 〉 = ∣ + 〉λ λ λi n n n1, ,

1 2
and ∣ 〉 = ∣ + + 〉λ λ λf n n n, 1, 1

1 2
, respectively. Similarly, for the

four-phonon process λ λ λ λ→ + +1 2 3, the initial and final quantum states are
∣ 〉 = ∣ + 〉λ λ λ λi n n n n1, , ,

1 2 3
and ∣ 〉 = ∣ + + + 〉λ λ λ λf n n n n, 1, 1, 1

1 2 3
, respectively. The

other processes can be analogized.

The transition rate in equation (2.4) is determined by the lattice Hamiltonian Ĥ
[2, 37]:

ˆ = ˆ + ˆ + ˆ + ⋯ + ˆ + ⋯H H H H H , (2.5)0 3 4 iso
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which includes the harmonic part

∑ ωˆ = ℏ +
λ

λ λ λ
†( )H a a 1/2 , (2.6)0

the first-order anharmonic part

∑ˆ = + + +
λλ λ

λλ λ λ λ λ λ λ λ−
†

−
†

−
†( )( )( )H H a a a a a a , (2.7)3

(3)

1 2

1 2 1 1 2 2

with

ω ω ω
=

ℏ

×
Δλλ λ

λλ λ

λ λ λ

+ +H
N

V

2 6
, (2.8)

q

q q q R
(3)

3/2

3/2 1/2 ,

(3)

1 2 1 2

1 2

1 2

∑ ∑= Φ
¯ ¯ ¯

αα α

λλ λ
αα α α

λ
α
λ

α
λ

· + ·V
m m m

e e e
e , (2.9)

b l b l b, ,

b l b l b

b b b

b b b

q r q r(3)
0 , ,

i il l
1 2

1 1 2 2 1 2

1 1 2 2

1 2 1 1

1

2 2

2

1 2

1 1 2 2

the second-order anharmonic part

∑ˆ = + + + +
λλ λ λ

λλ λ λ λ λ λ λ λ λ λ λ−
†

−
†

−
†

−
†( )( )( )( )H H a a a a a a a a (2.10)4

(4)

1 2 3

1 2 3 1 1 2 2 3 3

with

ω ω ω ω
=

ℏ

×
Δλλ λ λ

λλ λ λ

λ λ λ λ

+ + +H
N

V

2 24
(2.11)

q

q q q q R
(4)

2

2 ,

(4)

1 2 3 1 2 3

1 2 3

1 2 3

∑ ∑= Φ

×
¯ ¯ ¯ ¯

αα α α

λλ λ λ
αα α α

α
λ

α
λ

α
λ

α
λ

· + · + ·

V

m m m m

e e e e
e ,

(2.12)
b l b l b l b, , ,

b l b l b l b

b b b b

b b b b

q r q r q r

(4)
0 , , ,

i i il l l

1 2 3

1 1 2 2 3 3 1 2 3

1 1 2 2 3 3

1 2 3

1 1

1

2 2

2

3 3

3

1 2 3

1 1 2 2 3 3

and the extrinsic perturbations such as the isotopes

∑ˆ = + +
λλ

λλ λ λ λ λ−
†

−
†( )( )H H a a a a (2.13)iso

(iso)

1

1 1 1

with

∑∑ ω ω= − Δ Δ ·λλ λ λ
λ λ

+ +
− ·H

N
m e e

1

4
e , (2.14)

l b q,

l b b b
q

q q q R
q r(iso)

, ,
i

I

I
I l

1 1 1

1

where b, l and α label the indices of the basis atom, unit cell and direction,

respectively.Nq is the total number of q points of a uniform mesh in the first BZ. The

Kronecker delta Δi j, is 0 if ≠i j or 1 if i = j. e is the phonon eigenvector. The

summation of∑
l b,
goes over all the unit cells in the domain and the summation over
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q I1,2,3, goes over all the q points in the first BZ. †a and a are the phonon creation and

annihilation operators, respectively. R represents any reciprocal lattice vector that

can be decomposed into the superposition of integer reciprocal lattice basis vectors.

Φ is the interatomic force constant (IFCs). rl is the position vector of the lth unit cell.

(Attention should be paid to the usage of e and rl as discussed at the end of this

section.)

Substituting equation (2.5) into equation (2.4), the right-hand side of (2.2) can be

rewritten as [2, 13, 26, 34–40]

L

L

L

L

L

L

∑

∑

∑
τ

∂ ′

∂
= − + + − +

+ + − + +

− + + + − +

+ + + − + +

+ + − + + +

− − − −

λ λ

λ λ λ

λ

λ
λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

λ

−

+

−−

+−

++

{

{

}

}

n

t
n n n n n n

n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n

1

2
[ (1 )(1 ) (1 ) ]

[ (1 ) (1 )(1 ) ]

1

6
[ (1 )(1 )(1 ) (1 ) ]

1

2
[ (1 )(1 ) (1 )(1 ) ]

1

2
[ (1 ) (1 )(1 )(1 ) ]

( ) ( )
1

.

(2.15)

s

b

iso
0

,
0

1 2

1 2 1 2

1 2 1 2

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1

1

The first summation on the right-hand side represents the three-phonon scattering

rate of the mode λ, with the first term accounting for the splitting process λ λ λ→ +1 2

and the second the combination process λ λ λ+ →1 2. The physical meaning of the

first term is the difference between the transition rates of λ λ λ→ +1 2 and λ λ λ← +1 2

and thus indicates the decay rate of nλ due to the splitting process. Similarly, the

second term illustrates the transition rate difference between λ λ λ+ →1 2 and

λ λ λ+ ←1 2, indicating the decay rate of nλ due to the combination process. L±
contains the information of the intrinsic transition probability and the transition

selection rules for energy and momentum, ω ω ω± − =λ λ λ 0
1 2

and ± − =q q q R1 2 ,

where =R 0 implies the normal (N) process and ≠R 0 the Umklapp (U) process.

The second summation accounts for the four-phonon scattering of mode λ, with the

first parenthesis representing the process λ λ λ λ→ + +1 2 3, the second the process

λ λ λ λ+ → +1 2 3 and the third λ λ λ λ+ + →1 2 3. Similarly, L±± accounts for the
transition probabilities and the selection rules, i.e., ω ω ω ω± ± − =λ λ λ λ 0

1 2 3
and

± ± − =q q q q R1 2 3 , for those processes. The third summation is the phonon–

isotope scattering rate for λ λ→ 1 given by Tamura [37], with the selection rules

ω ω=λ λ1 and ≠q q1. The last term on the right-hand side of equation (2.15) indicates
the phonon–boundary scattering rate. The minus sign before each scattering term

indicates that the perturbation ′λn is decreasing with time, i.e. the phonon distribu-
tion tends to recover its equilibrium state due to the scattering. The expressions for

L±, L±± and Liso are given as
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L
π δ ω ω ω

ω ω ω
=

ℏ
Δ

± −λ λ λ

λ λ λ

± ± ±
N

V
4

( )
, (2.16)

q

(3) 2 1 2

1 2

L
π δ ω ω ω ω

ω ω ω ω
=

ℏ ℏ
Δ

± ± −λ λ λ λ

λ λ λ λ

±± ±± ±±
N N

V
4 2

( )
, (2.17)

q q

(4) 2 1 2 3

1 2 3

L ∑
π

ω ω δ ω ω= · −λ λ λ λ λ λ
*

N
g e e

2
( ). (2.18)

b

n

b
b b

q

iso

2

1 1 1

The Kronecker deltas Δ = Δ± ± −q q q R,1 2
and Δ = Δ±± ± ± −q q q q R,1 2 3

describe the momen-

tum selection rule. The delta function δ ωΔ( ) in the calculation of each L can be

evaluated by the Lorentzian function π ζ ω ζΔ +(1/ )( /(( ) ))2 2 . In the isotope scattering

formula, = ∑ − ¯g f m m(1 / )b i ib ib b
2 measures the mass disorder, where i indicates

isotope types, fib is the fraction of isotope i in lattice sites of basis atom b, mib is the

mass of isotope i and m̄b is the average atom mass of basis b sites. The transition

probability matrices ±V
(3) and ±±V (4) are

∑ ∑= Φ
αα α

αα α α
λ

α
λ

α
λ

±

± −

± · − ·V
m m m

e e e
e , (2.19)

b l b l b, ,

b l b l b

b b b

b b b

q r q r(3)
0 , ,

i il l

1 1 2 2 1 2

1 1 2 2

1 2 1 1

1

2 2

2

1 2

1 1 2 2

∑ ∑= Φ
αα α α

αα α α α
λ

α
λ

α
λ

α
λ

±±

± ± −

± · ± · − ·V
m m m m

e e e e
e , (2.20)

b l b l b l b, , ,

b l b l b l b

b b b b

b b b b

q r q r q r(4)
0 , , ,

i i il l l

1 1 2 2 3 3 1 2 3

1 1 2 2 3 3

1 2 3 1 1

1

2 2

2

3 3

3

1 2 3

1 1 2 2 3 3

Φαα α
b l b l b0 , ,1 1 2 2

1 2 and Φαα α α
b l b l b l b0 , , ,1 1 2 2 3 3

1 2 3 are the third-order and fourth-order IFCs.

Assume a perturbation in all the phonon modes [34, 41–43], we have

ω
= + ′ ′ = −Ψ

∂

∂ ℏ
= Ψ · +λ λ λ λ λ

λ

λ

λ λ λ( )n n n n
n

k T
n n,

( )

1
1 , (2.21)0

0

B

0 0

ω
= + ′ ′ = −Ψ

∂

∂ ℏ
= Ψ · +λ λ λ λ λ

λ

λ

λ λ λ( )n n n n
n

k T
n n,

( )

1
1 , (2.22)0

0

B

0 0
1 1 1 1 1

1

1

1 1 1

ω
= + ′ ′ = −Ψ

∂

∂ ℏ
= Ψ · +λ λ λ λ λ

λ

λ

λ λ λ( )n n n n
n

k T
n n,

( )

1
1 , (2.23)0

0

B

0 0
2 2 2 2 2

2

2

2 2 2

ω
= + ′ ′ = −Ψ

∂

∂ ℏ
= Ψ · +λ λ λ λ λ

λ

λ

λ λ λ( )n n n n
n

k T
n n,

( )

1
1 , (2.24)0

0

B

0 0
3 3 3 3 3

3

3

3 3 3

where Ψ measures the derivation in the phonon distribution from equilibrium,

weighted with a factor that depends on the equilibrium distribution of that mode

[34]. In the final step of each of equations (2.21)–(2.24), we used the fact that

ω∂ ∂ ℏ = − +n n n k T/ ( ) ( 1)/0 0 0
B . By substituting equations (2.21)–(2.24) into equation
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(2.15) and dropping the higher-order terms ΨO( )2 and ΨO( )3 , the scattering term of

the linearized phonon BTE is written as

⎫
⎬
⎭

L

L

L

L

L

L

∑

∑

∑
τ

∂ ′

∂
= − Ψ − Ψ − Ψ + +

+ Ψ + Ψ − Ψ +

− Ψ − Ψ − Ψ − Ψ +

+ Ψ + Ψ − Ψ − Ψ + +

+ Ψ + Ψ + Ψ − Ψ + + +

− Ψ − Ψ + − Ψ +

λ λ

λ λ λ

λ

λ
λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

λ

−

+

−−

+−

++

{

{

}

( )( )

( )

( )

( )( )

( )( )( )

( ) ( )

n

t k T
n n n

n n n

k T
n n n n

n n n n

n n n n

k T
n n

k T
n n

1 1

2
( ) 1 1

( ) 1

1 1

6
( ) 1

1

2
( ) 1 1

1

2
( ) 1 1 1

1
( ) 1

1
1

1
.

(2.25)

s

b

B

0 0 0

0 0 0

B

0 0 0 0

0 0 0 0

0 0 0 0

B

0 0
iso

B

0 0

,
0

1 2

1 2 1 2

1 2 1 2

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1

1

Here, we have taken advantage of the identical relations

λ λ λ→ + + + − + =λ λ λ λ λ λ( )( ) ( )n n n n n n: 1 1 1 0, (2.26)1 2
0 0 0 0 0 0

1 2 1 2

λ λ λ+ → + − + + =λ λ λ λ λ λ( ) ( )( )n n n n n n: 1 1 1 0, (2.27)1 2
0 0 0 0 0 0

1 2 1 2

λ λ λ λ→ + + + + + − + =λ λ λ λ λ λ λ λ( )( )( ) ( )n n n n n n n n: 1 1 1 1 0, (2.28)1 2 3
0 0 0 0 0 0 0 0

1 2 3 1 2 3

λ λ λ λ+ → + + + − + + =λ λ λ λ λ λ λ λ( )( ) ( )( )n n n n n n n n: 1 1 1 1 0, (2.29)1 2 3
0 0 0 0 0 0 0 0

1 2 3 1 2 3

λ λ λ λ+ + → + − + + + =λ λ λ λ λ λ λ λ( ) ( )( )( )n n n n n n n n: 1 1 1 1 0, (2.30)1 2 3
0 0 0 0 0 0 0 0

1 2 3 1 2 3

and

λ λ λ→ + + + − =
+ +

+

= = + +

λ λ λ λ

λ λ

λ

λ λ

λ

λ λ

( )( )
( )( )

( )
n n n n

n n

n

n n

n
n n

: 1 1
1 1

1

1 ,

(2.31)

1 2
0 0 0 0

0 0

0

0 0

0

0 0

1 2 1 2

1 2

1 2

1 2
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λ λ λ+ → + − + =
+

=
+

+
= −

λ λ λ λ

λ λ

λ

λ λ

λ

λ λ

( ) ( )
( )

( )

n n n n
n n

n

n n

n
n n

: 1 1
1

1

1
,

(2.32)

1 2
0 0 0 0

0 0

0

0 0

0

0 0

1 2 1 2

1 2

1 2

1 2

λ λ λ λ→ + + + + + − =λ λ λ λ λ λ

λ λ λ

λ

( )( )( )n n n n n n
n n n

n
: 1 1 1 , (2.33)1 2 3

0 0 0 0 0 0
0 0 0

01 2 3 1 2 3

1 2 3

λ λ λ λ+ → + + + − + =
+

λ λ λ λ λ λ

λ λ λ

λ

( )( ) ( )
( )

n n n n n n
n n n

n
: 1 1 1

1
, (2.34)

1 2 3
0 0 0 0 0 0

0 0 0

01 2 3 1 2 3

1 2 3

λ λ λ λ+ + → + − + +

=
+ +

λ λ λ λ λ λ

λ λ λ

λ

( ) ( )( )

( )( )

n n n n n n

n n n

n

: 1 1 1

1 1
.

(2.35)

1 2 3
0 0 0 0 0 0

0 0 0

0

1 2 3 1 2 3

1 2 3

Equations (2.26–2.35) are obtained based on the energy conservation rule combined

with the Bose–Einstein distribution. For example, equations (2.26) and (2.31) are

derived by substituting ω of the Bose–Einstein distribution = +ω
λ

ℏ ne 1 1/k T/ 0B into
the energy conservation (selection rule) ω ω ω= +1 2, giving the result

+ = + +λ λ λn n n1 1/ (1 1/ )(1 1/ )0 0 0
1 2

, which directly deduces equations (2.26) and

(2.31).

The final expression of the right-hand side of the original phonon BTE (equation

(2.2)) is obtained by defining the form [43] of

ωτΨ = −ℏ · ∇T Tv / (2.36)

and putting it into equation (2.25) for all the modes λ, λ1, λ2 and λ3, while the left-

hand side of equation (2.2) is transformed by the identical relation

ω∂

∂
=

ℏ
+λ λ

λ λ( )
n

T T k T
n n

1
1 . (2.37)

0

B

0 0
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Thus, the phonon BTE (equation (2.2)) is transformed as

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

L

L

L

L

L

L

∑

∑

∑

τ τ ξ τ ξ

τ τ ξ τ ξ

τ τ ξ τ ξ τ ξ

τ τ ξ τ ξ τ ξ

τ τ ξ τ ξ τ ξ

τ τ ξ
τ

τ

= − −
+ +

+

+ + −
+

+

+ − − −

+ + − −
+

+ + + −
+ +

+ − +

λ λ

λ λ λ

λ

λ λ λλ λ λλ

λ λ

λ

λ λ λλ λ λλ

λ λ

λ

λ λ λλ λ λλ λ λλ

λ λ λ

λ

λ λ λλ λ λλ λ λλ

λ λ λ

λ

λ λ λλ λ λλ λ λλ

λ λ λ

λ

λ λ λλ
λ

λ

−

+

−−

+−

++

( )( )

( )

( )

( )( )

n n

n

n n

n

n n n

n

n n n

n

n n n

n

1
1

2
( )

1 1

1

( )
1

1

1

6
( )

1

2
( )

1

1

2
( )

1 1

( ) ,
b

0 0

0

0 0

0

0 0 0

0

0 0 0

0

0 0 0

0

iso

,
0

1 2

1 1 2 2

1 2

1 1 2 2

1 2

1 2 3

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1 2 3

1

1 1

and further as

τ τ= + Ξ + Ξ + Ξλ λ λ λ λ(1 ), (2.38)0
3, 4, iso,

with

τ τ τ τ τ
= + + +

λ λ λ λ λ

1 1 1 1 1
, (2.39)

b
0

3,
0

4,
0

iso,
0

,
0

L L∑
τ
= + + + −

λ λλ

λ λ λ λ− +{ }( ) ( )n n n n
1 1

2
1 , (2.40)

3,
0

0 0 0 0

1 2

1 2 1 2

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

L L

L

∑
τ
= +

+

+
+ +

λ λ λλ

λ λ λ

λ

λ λ λ

λ

λ λ λ

λ

−− +−

++

( )

( )( )

n n n

n

n n n

n

n n n

n

1 1

6

1

2

1

1

2

1 1
,

(2.41)
4,
0

0 0 0

0

0 0 0

0

0 0 0

0

1 2 3

1 2 3 1 2 3

1 2 3

L∑
τ

=
λλ

1
, (2.42)

iso,
0 iso

1

v v

τ
=
∣ ∣

+
∣ ∣ −

+λ

λ λ

L W

p

p

1 2 2 1

1
. (2.43)

b

x y

,
0

, ,
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L

L

∑ τ ξ τ ξ

τ ξ τ ξ

Ξ = + + +

+ − −

λ λ

λ λ λλ λ λλ λ λ

λ λλ λ λλ λ λ

−

+

{
}

( )

( )

n n

n n

1

2
( ) 1

( ) ,

(2.44)
3,

0 0

0 0

1 2

1 1 2 2 1 2

2 2 1 1 1 2

⎪

⎪

⎪

⎪
⎧
⎨
⎩

⎫
⎬
⎭

L

L

L

∑ τ ξ τ ξ τ ξ

τ ξ τ ξ τ ξ

τ ξ τ ξ τ ξ

Ξ = + +

+ + −
+

+ − −
+ +

λ λ λ

λ λ λλ λ λλ λ λλ

λ λ λ

λ

λ λλ λ λλ λ λλ

λ λ λ

λ

λ λλ λ λλ λ λλ

λ λ λ

λ

−−

+−

++

( )

( )( )

n n n

n

n n n

n

n n n

n

1

6
( )

1

2
( )

1

1

2
( )

1 1
,

(2.45)

4,

0 0 0

0

0 0 0

0

0 0 0

0

1 2 3

1 1 2 2 3 3

1 2 3

2 2 3 3 1 1

1 2 3

3 3 1 1 2 2

1 2 3

L∑ τ ξΞ =
λ

λ λ λλ , (2.46)iso, iso

1

1 1

v

v

ξ
ω

ω

ω

ω
≡

· ∇

· ∇
=λλ

λ

λ

λ

λ

λ λ

λ λ

T

T

v

v
, (2.47)

x

x
1

1 1 1 1

v

v

ξ
ω

ω

ω

ω
≡

· ∇

· ∇
=λλ

λ

λ

λ

λ

λ λ

λ λ

T

T

v

v
, (2.48)

x

x
2

2 2 2 2

v

v

ξ
ω

ω

ω

ω
≡

· ∇

· ∇
=λλ

λ

λ

λ

λ

λ λ

λ λ

T

T

v

v
. (2.49)

x

x
3

3 3 3 3

In summary, τλ is obtained by solving equation (2.38), with equations (2.16)–(2.20)

and (2.39)–(2.48). Since both the left- and right-hand sides contain the unknown τλ,

equation (2.38) is solved iteratively and thus is also called the iterative scheme. τλ
0 in

equation (2.39) is the phonon relaxation time based on SMRTA [26]. In the boundary

scattering term, L and W represent the length (along the heat flow direction) and the

width (perpendicular to the heat flow direction) of the material. ⩽ ⩽p0 1 is the

specularity parameter with p = 0 indicating an extremely rough surface and

p = 1 indicating a mirror-like surface.

Generally, four-phonon scattering is dominated by the Umklapp processes and,

therefore, the SMRTA τλ
0 in equation (2.39) is accurate enough to account for the

four-phonon scattering in general materials. In other words, to save time it is not

necessary to take into account the iteration of Ξ λ4, in equation (2.38). However, in
some materials such as graphene, the four-phonon scattering is dominated by

normal processes, which lead to a collective behavior of phonons. In this case, Ξ λ4,

cannot be neglected in the iteration in equation (2.38). Such a phenomenon results
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from the fact that N-scattering itself does not contribute to thermal resistance since it

conserves momentum.

Attention should be paid to the usage of eigenvectors e and the phases in the

exponential terms in equations (2.19) and (2.20). In these equations, we assume that

the eigenvectors are obtained by solving the dynamical matrix

∑= Φαα
αα ·D

m m
q( )

1
e , (2.50)

l

bb

b b
b l b

q r
0 ,

i l
1

1

1
1

1 1

1 1

which uses the positions of cells instead of atoms. However, if the eigenvectors are

obtained by solving the dynamical matrix using

∑= Φαα
αα · −D

m m
q( )

1
e , (2.51)

l

bb

b b
b l b

q r r
0 ,

i ( )l b b
1

1

1
1

1 1

1 1 1 0

as implemented in Phonopy [44], one should use the positions of atoms (rlb) instead

of the positions of cells (rl) in the phases of the exponential terms in equations (2.19)

and (2.20), which should read

± · − ·e (2.52)q r q ri il b l b1 1 1 2 2 2

for three-phonon scattering and

± · ± · − ·e (2.53)q r q r q ri i il b l b l b1 1 1 2 2 2 3 3 3

for four-phonon scattering.

2.3 Strong four-phonon scattering potential

In this section, we demonstrate the significance of four-phonon scattering originat-

ing from strong scattering potential, i.e. strong anharmonicity. Figure 2.2 shows the

sketches of the potential wells of weakly and strongly anharmonic materials. The

exact potential energy is decomposed into the Tyler series to the second, third and

fourth orders. The second-order expansion is harmonic and has large derivation

from the exact potential. Since anharmonicity basically increases with increasing

temperature, such derivation becomes large at high temperaures. The third-order

(anharmonic) correction could alleviate such a derivation but is not adequate at high

temperatures, while the fourth-order (anharmonic) correction brings the potential

well much closer to exactly one. For weakly anharmonic materials, the fourth-order

correction is negligible at low temperatures while it becomes significant at elevated

temperatures. For strongly anharmonic materials, even starting from a low temper-

ature, the fourth-order correction is large (while at high temperatures the fifth-order

correction seems non-negligible). Note that ‘high’ or ‘low’ temperature is a relative

quantity, depending on the Debye temperature (TD) of a material. For example, 80

K is ‘high’ for solid argon (TD ≈ 80 K), while 300 K is ‘low’ for silicon (TD ≈ 640 K)

and diamond (TD ≈ 2220 K).

Therefore, this section consists of two parts, demonstrating the two categories of

materials with strong four-phonon scattering potential, i.e. weakly anharmonic
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materials at high temperatures (section 2.3.1) and strongly anharmonic materials

even at low temperatures (section 2.3.2). For the first category, we take diamond,

silicon and germanium as examples, which have high RT thermal conductivity. For

the second category, we use solid argon, PbTe and NaCl as examples.

2.3.1 High temperature

The first category with strong four-phonon scattering potential is found in general

solids at high temperatures, even with high RT thermal conductivity, such as

diamond, silicon and germanium. As a starting point, classical potentials [45, 46] are

used to calculate the fourth-order force constants as well as the four-phonon

scattering rates [26]. The accuracy of four-phonon calculations is examined by

comparing the thermal conductivities obtained from the three-/four-phonon scatter-

ing to those obtained from Green–Kubo MD simulations.

In figure 2.3, the three- and four-phonon scattering rates, τ λ
−
3,
1 and τ λ

−
4,
1, of diamond,

Si and Ge are shown as a function of temperature. Far below their Debye

temperatures, 2220, 640 and 374 K for diamond, Si and Ge, respectively, τ λ
−
4,
1 is

generally negligible. However, τ λ
−
4,
1 increases faster than τ λ

−
3,
1 with increasing temper-

ature and is no longer negligible when the temperature is high. Even for diamond,

the most harmonic material with stiff bonds, it can be speculated from the trend that

four-phonon scattering could be important when the temperature is close to its

Debye temperature. We also noted that four-phonon scattering is relatively more

important for optical phonons than acoustic phonons. This will be discussed in the

following sections. The scaling laws τ ∼λ
− T3,
1 and τ ∼λ

− T4,
1 2 are found to be valid for

both acoustic and optical phonons for all materials. These temperature dependences

Figure 2.2. Sketches of the interatomic potentials of (a) weakly and (b) strongly anharmonic materials near the

equilibrium position r0. Shown are the exact potential (red solid curve), harmonic approximation (black

dashed curve), third-order approximation (blue solid curve) and fourth-order approximation (green solid

curve). The difference between the third-order approximation and the exact potential is marked by blue solid

lines. The atomic vibration range is represented by temperature, i.e. atoms deviate from the equilibrium

position more at higher temperatures. For weakly anharmonic materials, the fourth-order correction becomes

important at elevated temperatures, while for strongly anharmonic materials, it is significant starting from low

temperature.
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result from equation (2.39), which roughly indicates τ ∼λ
− n3,
1 0 and τ ∼λ

− n( )4,
1 0 2,

leading to τ ∼λ
− T3,
1 and τ ∼λ

− T4,
1 2 since n0 is proportional to T at high temperatures.

The impact of four-phonon scattering on thermal conductivity is demonstrated by

comparing

v∑κ τ=
λ

λ λ λ
V

c
1

(2.54)z z3,RTA, ,
2

3,

and

v∑κ τ τ= +
λ

λ λ λ λ+
− − −

( )
V

c
1

(2.55)z z3 4,RTA, ,
2

3,
1

4,
1 1

as shown in figures 2.4 and 2.8. For diamond, Si and Ge, κ3 and κ +3 4 match well with

each other at low temperatures, indicating that four-phonon scattering is negligible.

At room temperature, κ +3 4 is lower than κ3 by 1%, 8% and 15% for diamond, Si and

Ge, respectively, as shown in the inset in figure 2.4. As the temperature increases to

1000 K, this discrepancy grows to 15%, 25% and 36%, respectively. Such results,

again, indicate that even in weakly anharmonic materials, four-phonon scattering

may play a critical role at high temperatures.

Figure 2.3. Temperature-dependent τ λ
−
3,
1 (blue) and τ λ

−
4,
1 (red) of the eight evenly sampled q points from Γ to X

in diamond, silicon and germanium. Each curve represents an individual mode (a branch of a sampled q

point). The dashed lines label Debye temperatures. The force constants are obtained from classical Tersoff

potentials. Reproduced with permission from [26]. Copyright 2016 the American Physical Society.
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The accuracy of the four-phonon scattering calculation is examined by MD

simulations, which naturally include all the orders of anharmonicities. κ3 and κ +3 4

are compared to κNMA, which is calculated by the BTE using the linewidth τ λ
−
NMA,
1

obtained from normal mode analysis (NMA) based on MD. They are also

compared to κGK(MD) that is directly obtained from the Green–Kubo formalism

based on MD. A good agreement between κ +3 4 and κNMA as well as κGK(MD) is found

for Si and Ge in figure 2.4. The comparison in diamond is not done since diamond

has a high Debye temperature, below which κ +3 4 obtained from quantum mechanics

is not comparable to κNMA and κGK(MD) from classical MD. In contrast, κ3 is

considerably over-predicted, particularly at high temperatures. For clearer insight,

we plot the ratio of κ κ+ /3 4 3 as a function of temperature in the insets. Since we use

empirical interatomic potentials that are approximations to the true atomic

interactions, the numbers presented here should be understood with caution or on

a semi-quantitative basis.

ALD and MD were regarded as two different methods. The phonon scattering

rates calculated from the former and the phonon linewidths calculated from the

latter were regarded as two separate quantities with their quantitative agreement

remaining missing for a long time [25]. With the aid of four-phonon scattering, these

two quantities match, and the two methods become consistent with each other. The

four-phonon calculation pushes a step forward towards the ‘unification’ of the

simulation methods of phonon and thermal transport.

To have a quantitative comparison between the four-phonon calculation and

experiment, it is necessary to use DFT instead of empirical potentials for the

calculation of force constants. The calculations were performed for diamond and

silicon. While diamond will be shown in section 2.4.1 for special purposes, here we

take silicon for demonstration. The three- and four-phonon scattering rates for all

Figure 2.4. The comparison among κ3,RTA, κ +3 4,RTA, κNMA,RTA and κ −Green Kubo,RTA for diamond, silicon

and germanium predicted from classical Tersoff potentials. The inset shows the ratio κ κ+ /3 4,RTA 3,RTA.

Reproduced with permission from [26]. Copyright 2016 the American Physical Society.
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modes throughout the Brillouin zone of Si calculated from DFT are shown in

figure 2.5 at 300 and 1000 K. The insets show the low-frequency behavior. We note

that the four-phonon scattering rates increase quadratically with temperature, while

three-phonon scattering rates increase linearly, not shown here. The trend is

consistent with the preceding discussions based on classical potentials. At 300 K,

τ−4
1 is well below τ−3

1 in Si throughout the frequency domain. As T increases to 1000
K, the four-phonon rates of the low-frequency phonons remain insubstantial;

however, higher-energy longitudinal acoustic (LA) modes and all the optical modes

exhibit large τ−4
1, comparable to τ−3

1. The large τ−4
1 of the heat-carrying LA phonons

will have a substantial effect on the thermal conductivity of these materials, and that

of the optical modes can affect infrared optical properties [19].

The thermal conductivity of silicon is calculated by solving the iterative phonon

BTE beyond the RTA. Due to the high computational cost, the four-phonon

scattering rates are computed at the RTA level only and inserted into the iterative

scheme that determines the nonequilibrium phonon distributions from mixing of the

three-phonon processes. This is similar to employing phonon–isotope and phonon–

boundary scattering terms in the full BTE solution [9, 11, 47–51]. We will show that

such an approximation is likely valid as the four-phonon scattering is dominated by

Umklapp processes in section 2.5.2. We also include phonon–isotope scattering [37]

in these κ calculations of naturally occurring materials. The iterative solution to the

BTE for κ of the naturally occurring Si is shown in figure 2.6. The three-phonon

predictions agree well with measured data at low temperature (<600 K); however,

significant deviations from experiment occur at high temperatures. For example, at

1000 K three-phonon resistance alone over-predicts the measured κ of silicon by

26%. In section 2.4.1, we will see that the over-prediction is also around 30% for

diamond at 1000 K. Four-phonon scattering eliminates such discrepancies and

brings the prediction to match well with experimental values. These examples

demonstrate the significance of four-phonon scattering due to a strong scattering

potential at high temperatures.

Figure 2.5. First-principles three-phonon (black squares) and four-phonon (red circles) scattering rates of Si at

300 and 1000 K with 16 × 16 × 16 phonon q point grids. The insets are in log–linear scales to give a better view

of the low-frequency regions. Reproduced with permission from [27]. Copyright 2017 the American Physical

Society.
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2.3.2 Strongly anharmonic materials

For materials with low thermal conductivity, the four-phonon scattering potential is

high even at ordinary temperature. We take Lennard-Jones argon as the benchmark

material and then move onto more practically important materials, PbTe and NaCl.

The scattering rates and thermal conductivity of argon are shown in figures 2.7 and

2.8, respectively. The summation of three- and four-phonon rates τ τ+λ λ
− −
3,
1

4,
1 agrees

well with MD results, τ λ
−
NMA,
1 . It is seen that four-phonon is non-negligible even far

below its Debye temperature and that it reduces the κ of argon by 35%–65% from 20

to 80 K.

PbTe and NaCl are two strongly anharmonic materials, in which the four-phonon

scattering potential is high even at RT [32, 33]. It is also found that for those

materials the phonon frequency shift at finite temperature is large and would affect

the phonon scattering rates. Phonon modes at finite temperature are softened by

anharmonicity via anharmonic three- and four-phonon scatterings as well as thermal

expansion [55]. The phonon scattering, phonon frequency and thermal expansion

are coupled together. Phonon scattering affects thermal expansion and changes

phonon frequency, while thermal expansion also shifts phonon frequency, which in

turn affects phonon scattering.

Strongly anharmonic materials generally have strong four-phonon scattering and,

at the same time, their phonon frequencies at finite temperatures shift considerably

away from those at 0 K due to the strong anharmonicity, which typically induces

large thermal expansion as well as bond softening. The steps to reasonably include

most anharmonic effects for thermal conductivity prediction with the current

computational power are described in [32, 33] and are briefly summarized as

follows. Step 1: Determine the correct temperature-dependent lattice constant, i.e.

thermal expansion coefficient, by using quasiharmonic approximation (QHA)

Figure 2.6. Thermal conductivities of naturally occurring Si. Dashed lines give first-principles calculated κ3,

while solid lines give κ +3 4. Calculation data are taken from [27]. Symbols represent measured data from: [52]

triangles; [53] squares; and [54] circles.
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Figure 2.7. (a) and (b) A comparison between three- and four-phonon scattering rates for Lennard-Jones

argon. (c) and (d) The total scattering rates (τ τ+λ λ
− −
3,
1

4,
1) compared to the linewidths obtained from NMA based

on MD simulations. Reproduced with permission from [26]. Copyright 2016 the American Physical Society.

Figure 2.8. The κ values of Lennard-Jones argon predicted from τ λ
−
3,
1, τ τ+λ λ

− −
3,
1

4,
1 and τ λ

−
NMA,
1 as a function of

temperature, with the inset showing the ratio of κ κ+ /3 4 3. κNMA(Q) and κNMA(C) represent that the specific heat

is calculated by the quantum (Bose–Einstein) and classical (Boltzmann) phonon distributions, respectively.

The phonon dispersion used in the calculation of κNMA is from lattice dynamics (LD) calculation at 0 K, to be

consistent with the κ3 and κ +3 4 calculations. Reproduced with permission from [26]. Copyright 2016 the

American Physical Society.
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together with phonon renormalization (RN), hereafter referred to as QHA′. Step 2:

Determine the harmonic phonon frequency ω ′QHA at the temperature-dependent

lattice constant for a given temperature. Step 3: Calculate the anharmonic frequency

ω ′+QHA RN by taking into account phonon renormalization. Step 4: Calculate the

three- and four-phonon scattering rates as well as thermal conductivity based on the

anharmonic frequency ω ′+QHA RN. Steps 3 and 4 could be performed at the same time

by calculating the real and imaginary parts of the phonon self-energy [2, 26, 32, 55]

to avoid the double counting of phonon anharmonicity.

Figure 2.9 shows the thermal conductivities of PbTe and NaCl calculated by

considering different degrees of anharmonicity as compared to experimental values.

It is found that the three-phonon scattering without phonon renormalization can

somehow predict the thermal conductivities well. After the phonon renormalization

is included, the predicted thermal conductivities appear far above experimental

values. If four-phonon scattering is considered, it pulls back the thermal conduc-

tivity prediction to agree well with experiments. Therefore, the agreement between

the prediction and experimental values achieved by three-phonon scattering calcu-

lations without phonon renormalization or four-phonon scattering is a coincidence.

The reason is that phonon renormalization largely shrinks the phonon scattering

phase space while the inclusion of four-phonon scattering increases the scattering

phase space, and they cancel each other for PbTe and NaCl. When the phonon

renormalization effect and the four-phonon scattering are both considered, the

thermal conductivity prediction reaches the best accuracy. At this moment, it is still

an open question whether this phenomenon appears in PbTe and NaCl only or in a

broader scope of strongly anharmonic materials.

2.4 Large four-phonon or suppressed three-phonon phase space

Apart from a strong scattering potential, the other origin of strong four-phonon

scattering is the large scattering phase space. In this section, we will discuss such

groups of materials, including the materials with large acoustic–optical phonon

Figure 2.9. The thermal conductivities of PbTe and NaCl calculated from DFT (solid curves) in comparison to

experimental data (symbols). First-principles data are taken from [32] for PbTe and [33] for NaCl. The

experimental data are taken from [56, 57] for PbTe and [58–60] for NaCl.
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band gaps and two-dimensional materials with reflection symmetry. We will also

particularly discuss optical phonon modes, which usually have a large density of

states and, therefore, large four-phonon scattering phase space.

2.4.1 Materials with large acoustic–optical phonon band gaps

When a material is composed of two elements with a large atomic mass ratio, the

phonon vibration spectrum often presents a band gap. For example, the III–V or

IV–IV binary zinc-blende BAs, SiC, AlAs, AlSb, GaN, GaP, InAs and InP all show

a band gap, as shown in figure 2.10. Lindsay et al [11] found that phonon band gaps

limited the three-phonon scattering phase space since the energy summation of two

lower-branch phonons could hardly reach the high energy of optical phonon

branches. As a result, the thermal conductivity predicted by three-phonon scattering

Figure 2.10. First-principles phonon dispersion of III–V binary compounds with phonon band gaps, which

limit three-phonon processes but limit four-phonon processes less. Data from [20]. These dispersion relations

agree well with experiment, as seen in [20].
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for these materials is often very high. However, Feng et al [27] found that such band

gaps do not restrict four-phonon scattering significantly since three lower-branch

phonons are easily combined into a high-branch phonon mode, allowed by the

energy conservation law, as shown in figure 2.10. As a consequence, four-phonon

scattering in these materials is of significance to their thermal conductivity

predictions.

A predominant example is BAs, which has been predicted using three-phonon

scattering to own a thermal conductivity of 2 200 W (m K)−1 at room temperature

[11], being comparable to diamond, the highest in nature. Given such high thermal

conductivity, it potentially opens an opportunity for thermal management of

electronic devices.

However, Feng et al [27] found that four-phonon scattering is strong in BAs. In

figure 2.11, the first-principles three- and four-phonon scattering rates of BAs are

compared to those of diamond. The relative importance of four-phonon scattering

in these two materials shows a clear difference. At room temperature, diamond

shows negligible τ−4
1 throughout the whole spectrum, while BAs present non-

negligible τ−4
1 for higher-branch acoustic phonons as well as all optical phonons.

For example, three-phonon scattering rates have a deep valley at around 21 THz, i.e.

for the optical phonon at the Γ point. These modes with high energy and small

Figure 2.11. First-principles three-phonon (black squares) and four-phonon (red circles) scattering rates of

diamond and BAs at 300 and 1000 K with 16 × 16 × 16 phonon q point grids. The insets are in log–linear scale

to give a better view of the low-frequency regions. Reproduced with permission from [27]. Copyright 2017 the

American Physical Society.

Nanoscale Energy Transport

2-23



momentum can hardly find two other phonon modes that satisfy energy conserva-

tion and momentum conservation simultaneously. Such a large phonon band gap,

however, does not forbid three acoustic phonons from combining into an optical

mode. The predicted thermal conductivity of BAs after including four-phonon

scattering at room temperature is reduced significantly, from ∼2200 W(m K)−1 to

∼1400 W (m K)−1, as shown in figure 2.12. Such reduction grows with increasing

temperature, and the temperature-scaling trend at elevated T changes from

κ ∼ −T3
0.84 to κ ∼ −T34

1.64.

In 2018, several experimental works [28–30] grew high-purity BAs single crystals

and verified the predicted thermal conductivity of BAs by including four-phonon

scattering. As shown in figure 2.12, both the thermal conductivity values and

temperature dependence measured from experiments agree well with the predictions.

Without four-phonon scattering, one can fit the thermal conductivity to match the

experiment at a certain temperature by adding phonon–defect scattering [29], which,

however, cannot reproduce a correct temperature-scaling trend. Therefore, it is safe

to conclude that the lower thermal conductivity of experimental samples compared

to κ3 is due to the strong four-phonon scattering, rather than defects. Later, the four-

phonon scattering in boron phosphide (BP) was also verified in an experiment by

Cahill et al [65].

Figure 2.12. Thermal conductivities of naturally occurring diamond and BAs. Dashed lines give calculated κ3,

while solid lines give κ +3 4. First-principles data (curves) are taken from [27]. The symbols represent measured

data. For diamond: blue triangles [61], blue squares [62], blue circles [63], blue squares [64]; for BAs: black

squares [29], black stars [30], red circles [28] and red triangles [28].
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In diamond, which does not present a phonon band gap, four-phonon scattering

is not as strong as in BAs but is certainly not negligible at high temperatures. As T

increases to 1000 K, four-phonon rates of the low-frequency phonons remain

insubstantial, however, higher-energy LA modes and all the optical modes exhibit

large τ−4
1, comparable to τ−3

1 leading to a 23% reduction to the thermal conductivity.
The other materials with phonon band gaps may also show a large reduction of

thermal conductivity with four-phonon scattering. Figure 2.13 shows another

example, cubic GaN (c-GaN), in which the four-phonon scattering brings the

thermal conductivity prediction down by a considerable amount to agree well with

experiment.

Yang et al [66] found that for some materials in which optical branches have long

three-phonon lifetimes, e.g. AlSb, four-phonon scattering is even more critical than

three-phonon scattering as it diminishes optical phonon thermal transport, and

therefore significantly reduces the thermal conductivities. Also, they showed that

four-phonon scattering can play an extremely important role in weakening the

isotope effect on κ. Specifically, four-phonon scattering reduces the room-temper-

ature κ of the isotopically pure and naturally occurring AlSb by 70% and 50%,

respectively (figure 2.14). The reduction for isotopically pure and naturally occurring

c-GaN is about 34% and 27%, respectively. For isotopically pure wurtzite GaN

(w-GaN), the reduction is about 13% at room temperature and 25% at 400 K. These

results provided important guidance for experimentalists for achieving high thermal

conductivities in III–V compounds for applications in semiconductor industry.

2.4.2 Optical phonons

The linewidths of infrared-active zone-center phonons are also important for the

infrared dielectric functions of polar materials, which are key for applications in

sensing, radiative cooling, energy harvesting, metamaterials, etc. For example, in

polar compound semiconductors such as BAs, BN and SiC crystals, the zone-center

longitudinal optical (LO) phonon lifetime plays an essential role in mediating the

Figure 2.13. Thermal conductivity of c-GaN. First-principles data (solid curves) are taken from [66]. The

experiment values (black squares) are taken from [67].

Nanoscale Energy Transport

2-25



energy exchanges between the hot electrons and the lattice through Fröhlich

interaction [68]. The materials such as GaN, GaAs and AlAs are promising

candidates for use in optoelectronic devices and electronics. In addition, optical

phonon scattering is also crucial to the thermal conductivity of certain materials that

have a large number of optical phonon branches.

Optical phonons often exhibit relatively stronger four-phonon scattering com-

pared to acoustic phonons as shown in the preceding sections. The reason is that

optical phonons typically have a much higher density of states. Such a large amount

of modes crowded within a narrow frequency range enabled large four-phonon

scattering phase space for the process λ λ λ λ+ → +1 2 3 4 with λ1,2,3,4 having similar

Figure 2.14. Lattice thermal conductivity as a function of temperature for (a) AlSb, (b) cubic GaN and

wurtzite GaN along the (c) in-plane and (d) through-plane directions. Dashed lines represent the calculated

isotopically pure κpure and solid lines represent the calculated naturally occurring κnatural. The blue lines give

the calculated κ with only three-phonon scattering and red lines give the results after including four-phonon

scattering. All symbols represent experimental data for naturally occurring materials, which can be found in

[66].
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energy. More importantly, for the materials with phonon band gaps, four-phonon

scattering is exceptionally important.

Figure 2.15 shows the zone-center optical phonon linewidths of α-quartz and

3C-SiC [20]. Figure 2.16 shows those of III–V compounds including c-BN, BAs,

AlP, AlAs, AlSb, c-GaN, GaP, GaAs, GaSb, InP, InAs and InSb [20]. The first-

principles calculated linewidths without four-phonon scattering are compared to

available experimental values. The predicted optical phonon linewidths with only

three-phonon scattering significantly disagree with the Raman measurements at mid

and high temperatures. With four-phonon scattering included, reasonable agree-

ments with available experimental data are achieved, demonstrating the significance

of four-phonon processes in determining their infrared phonon linewidths.

For BAs in particular, it can be seen that the three-phonon processes have no

contribution to optical phonon linewidth. This is due to the large acoustic–optical

(a–o) gap as discussed in the preceding section. A similar case is also found in AlSb.

Note that for c-BN, BAs, InAs and InSb, even including four-phonon scattering,

the prediction still has a significant discrepancy with experiments at higher temper-

atures, reflecting that five-phonon and higher-order phonon scattering may not be

negligible in these particular materials.

To understand the high τ−4
1 of optical phonons, we show the contributions of

different four-phonon processes of AlAs as an example in figure 2.17 (a). Clearly, it

shows that the redistribution process λ λ λ λ+ → +1 2 3 4 dominates the four-phonon

scattering of the optical phonon mode. This can be understood since the redistrib-

ution process is largely facilitated by the crowded branches of the optical phonon

modes, as shown in figure 2.17 (b), among which the conservation law of energy and

momentum can easily be satisfied by the four-phonon redistribution process.

Actually, this is a general phenomenon since optical branches are bunched closely

in energy in general materials, not limited to those with large acoustic–optical band

gaps. This could also be the reason why optical phonons generally have strong four-

and even higher-order phonon scattering.

Figure 2.15. The optical phonon linewidth at the Γ point for α-quartz and 3C-SiC. First-principles data from

[20]. Experimental data from [69, 70] for α-quartz and [16, 71] for SiC.
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The impact on optical phonon linewidth can also significantly affect thermal

transport. For example, the three-phonon scattering predicts that the RT thermal

conductivity of AlSb is about 98.8 W (m K)−1, in which optical phonons contribute

49% [66]. However, after the four-phonon scattering is included, the RT κ is reduced

Figure 2.16. The optical phonon linewidth at the Γ point for group III–V zinc-blende compounds. First-

principles data: τ−3
1 (blue curves) and τ τ+− −

3
1

4
1 (red curves) are taken from [20]. Note that the isotope or defect

scattering is not included in the theoretical data here. Experimental values (green dots): c-BN [72], BAs [73],

AlAs [74], AlSb [75, 76], c-GaN [77], GaP [6], GaAs [78], InP [78], InAs [79, 80] and InSb [75, 76].
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to 39.5 W(m K)−1 and the contribution of optical phonons is reduced to about 4%,

that is, four-phonon scattering nearly kills the thermal transport of optical phonons

in AlSb [66]. At 1000 K, the reduction is even larger, from 64% to 2%.

2.4.3 Two-dimensional materials with reflection symmetry

Two-dimensional materials with reflection symmetry are another example in which

three-phonon scattering is largely limited [81, 82], leaving four-phonon scattering

plenty of room to make a significant difference [31]. Graphene and hexagonal BN

are two examples that have been demonstrated by Lindsay et al to have reflection

symmetry [81, 82]. In this section, we take graphene as an example to demonstrate

the possible role of four-phonon scattering.

Graphene has attracted intense interest for both fundamental research and

practical applications due to its unique structure and extraordinary properties.
The two-dimensional honeycomb structure, the zero band gap and the strong sp2

bond endow graphene with unique electronic, thermal, optical and mechanical

behaviors. The thermal transport in graphene has been quite intriguing since it was

discovered that the scattering of flexural (out-of-plane) modes is largely forbidden by

the reflection symmetry, leading to long relaxation times and high thermal

conductivity. Three-phonon scattering theory predicts the room-temperature ther-

mal conductivity of single-layer graphene as being around 3000 W (m K)−1 [83, 84].

Different experimental methods, conditions and samples, however, showed quite

different thermal conductivity values ranging from ∼1500 to ∼4000 W (m K)−1

[85–89], and the widely used Raman technique has been questioned for use on

graphene recently [90], leaving the thermal conductivity value of graphene even

more mysterious.

Reflection symmetry in 2D materials forbids all the phonon–phonon scattering

processes that involve an odd number of flexural modes [82]. Lindsay et al found

numerically that in graphene the three-phonon scattering rates of the processes that

involve 1 or 3 flexural modes are zero [82]. Feng and Ruan have verified numerically

that the four-phonon scattering rates of the processes that involve 1 or 3 flexural

modes are zero as well. Therefore, three-phonon processes can only involve 0 or 2

Figure 2.17. (a) First-principles scattering rates of the TO mode of AlAs from different four-phonon processes.

(b) Sketch of the redistribution processes λ λ λ λ+ → +1 2 3 4. Data from [20].
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flexural modes, while the four-phonon processes may involve 0, 2 or 4 flexural

modes. Feng and Ruan found that most (60%–90%) of the three-phonon scattering

processes of the ZA branch are forbidden by the reflection symmetry, while only

about 40% of four-phonon scattering processes of the ZA branch are forbidden.

Most importantly, four-phonon scattering allows two important processes,

ZA + ZA → ZA + ZA and ZA ↔ ZA + ZA + ZA, which are called 4-ZA

processes, shown in figure 2.18. Due to the quadratic dispersion relation, the ZA

mode has quite a high phonon population near the Γ point as shown in figure 2.19.

Therefore, these processes have ultra-high scattering rates since the four-phonon

scattering is roughly proportional to the square of the phonon population.

The SMRTA-based three- and four-phonon scattering rates obtained from

optimized Tersoff potential are compared in figure 2.20 [31]. Since the scattering

rates follow the temperature dependence of τ ∼λ T1/ 3,
0 and τ ∼λ T1/ 4,

0 2, similarly to

those in bulk materials [26, 27], we take the temperatures at 300 and 700 K as

examples to show the amplitudes of τ λ1/ 3,
0 and τ λ1/ 4,

0 as a function of the reduced wave

vector from Γ to M. We find that τ λ1/ 4,
0 is comparable to or even much higher than

Figure 2.18. The 4-ZA processes in SLG. Reproduced with permission from [31]. Copyright 2018 the

American Physical Society.

Figure 2.19. The phonon populations for different branches in SLG, bilayer graphene (BLG) and graphite.

Data from [31].
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τ λ1/ 3,
0 , even at room temperature, in particular for the ZA, TO and LO branches. For

instance, τ λ1/ 3,
0 of the ZA branch at room temperature is typically below 0.08 ps−1

while the value of τ λ1/ 4,
0 is about 0.42-2 ps−1, which indicates the relaxation time of

ZA mode at room temperature is about 0.5–2 ps, far below expectations. At 700 K,

the τ λ1/ 4,
0 of the ZA, TO and LO branches even reach above 10 ps−1, being 2–3 orders

higher than τ λ1/ 3,
0 .

Feng and Ruan [31] found that the ZA four-phonon scattering is dominated by

the normal (N) process, as shown in figure 2.20, indicating hydrodynamic behavior

of phonon transport. Therefore, the SMRTA is not accurate to calculate the thermal

conductivity, instead, the iterative solution to the BTE is needed. Feng and Ruan

solved the iterative solution of BTE by including both three- and four-phonon

scatterings, and they showed that the thermal conductivity of 9 μm graphene is

reduced significantly from ∼3383 to ∼810 W(m K)−1 after including the four-

phonon scattering [31] (figure 2.21). Later in 2019, Gu et al refined the calculation of

four-phonon scattering in single-layer graphene by using a smeared broadening

factor as well as a temperature-dependent phonon dispersion relation [91]. They

further confirmed the striking importance of four-phonon scattering in SLG and

found that the thermal conductivity, using the optimized Tersoff potential, is about

Figure 2.20. The three-phonon and four-phonon scattering rates, τ−N3( )
1 , τ−U3( )

1 , τ−N4( )
1 and τ−U4( )

1 , of the six

branches of SLG with respect to the reduced wave vector (Γ–M) at 300 K calculated by using the optimized

Tersoff potential. Data from [31].
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Figure 2.21. (a) Length-dependent thermal conductivity of single-layer graphene at 300 K. (b) Length

convergence of thermal conductivity at 300 K. (c) Temperature-dependent lattice thermal conductivity. The

dashed lines represent the theoretical predictions from the literature with three-phonon scattering only.

The solid lines with open circles that are marked ‘this work’ are the predictions from [31]. In all the predictions,

the natural 1.1% 13C is included with the exact solution to the linearized BTE. The triangles show the

experimental measured results. Data from Lindsay et al [82, 83], Fugallo et al [84], Xie et al [93], Xu et al [87],

Li et al [94], Faugeras et al [85], Chen et al [95] and Lee et al [96]. Reproduced with permission from [31].

Copyright 2018 the American Physical Society.
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1900 W(m K)−1. Since the fourth-order force constant of the classical interatomic

potential [92] has not been validated against first-principles, the absolute values of

the thermal conductivity after including four-phonon scattering should be inter-

preted qualitatively.

Since the four-phonon scattering rates in SLG are high, two natural questions are:

(i) Does four-phonon scattering play an important role in multilayer graphene and

graphite? (ii) Is five-phonon scattering important in SLG? The answers are negative

for both questions. To address the first question, we plot the phonon dispersion of

bilayer graphene in figure 2.22. Due to the interlayer van der Waals interaction, the

ZA mode of SLG is split into the ZA and ZO′ modes in bilayer graphene or

graphite. ZO′ represents a breathing mode between adjacent layers. We find that

even such a small splitting can result in a large reduction of the phonon population,

as shown in figure 2.19. Due to the splitting, the phase space of the four-ZA process

becomes 1/16 of that in SLG, being unimportant. This explains the fact that the

three-phonon thermal conductivity prediction of graphite agrees well with experi-

ments [84, 97]. Regarding the second question, we need to refer to the reflection

symmetry. The five-phonon process can at most involve four ZA modes, the same as

four-phonon scattering. Without increasing the population, the higher order makes

the five-phonon scattering negligible compared to four-phonon scattering.

2.5 Further discussion

2.5.1 Scaling with frequency

Due to the simplicity, scaling laws of phonon scattering rates are very useful in

thermal nanoengineering. For example, the power laws of three-phonon scattering

τ ω∼− T3
1 2 and phonon–defect scattering τ ω∼−

d
1 4 have been widely used for

advanced thermoelectric materials in understanding experimental thermal conduc-

tivity [98–100]. Therefore, it is important to have a scaling law τ ω∼ β− T4
1 2 for four-

phonon scattering. In the early literature [18, 101], β was taken as 2 by using drastic

Figure 2.22. The phonon dispersion near the zone center along Γ–M in bilayer graphene calculated using an

optimized Tersoff potential.
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approximations. The fittings of diamond, Si and BAs in figure 2.23 show that the

value of β varies from 2 to 4. In comparison, τ−3
1 has a more dispersed distribution

with a frequency, and the scaling law τ ω∼− T3
1 2 cannot fit all the data well

simultaneously, while τ−4
1 has a more concentrated distribution and the scaling

law can fit all the phonons well. This is because the selection rules in four-phonon

processes can be more easily satisfied, that is, they become less restrictive and less

dependent on the dispersive nature of the phonon frequency.

2.5.2 Strong Umklapp scattering

The difference between iterative and RTA thermal conductivities comes from subtle

differences in the normal and Umklapp processes. Umklapp processes provide

thermal resistance, degradation of a flowing distribution of phonons. Normal

processes do not degrade the overall current but play the important role of

redistributing thermal energy among various modes in the system. If normal

processes dominate over Umklapp processes, the RTA solution does not accurately

represent κ as it treats normal processes as purely resistive and underestimates κ [9].

As shown in figure 2.24, three-phonon scattering is dominated by normal processes

in diamond and BAs, not so in Si. Thus, diamond and BAs require an exact solution

for three-phonon scattering [9]. As for four-phonon scattering, all three materials

show dominant Umklapp processes over normal processes. Thus, treating the four-

phonon scattering at the RTA level for most materials within the iteration scheme is

probably a good approximation.

2.5.3 Negligible three-phonon scattering to the second order

We note that two three-phonon processes, λ λ λ+ → ′1 and λ λ λ′ → +2 3, may be

combined to give the three-phonon scattering to the second order, which is another

type of fourth-order process [34, 101], as shown in figure 2.25 (b). Here, λ′ is an
intermediate virtual state. The energy is conserved from the initial state λ λ+ 1 to the

final state λ λ+2 3, while the energy is not necessarily conserved in the first step or in

the second step alone [34]. The energy denominators of three-phonon scattering

〈 ∣ ˆ ∣ 〉

∣ − ∣

i H f

E E
(2.56)

i f

3

and four-phonon scattering

〈 ∣ ˆ ∣ 〉

∣ − ∣

i H f

E E
(2.57)

i f

4

vanish due to the energy conservation law =E Ei f . In contrast to equations (2.56)

and (2.57), the transition matrix element in the combined three-phonon process is

v v

v

〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉

∣ − ∣

i H H f

E E

ir ir
. (2.58)

i

3 3
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∣vir〉 is the intermediate virtual state. The discussion of the denominator in equation

(2.58) can be divided into two cases. In case 1, the energy is not conserved in the first

or the second step [34]. The energy denominators for the transition are not small.

Therefore, the transition rate is not considered to be large, as discussed in [102]. In

case 2, the energy conservation condition for the first step is nearly satisfied or

satisfied. This process was named ‘resonance in three-phonon scattering’ and is

Figure 2.23. Power law fitting τ ω= β− A4
1 of the acoustic phonons in diamond, Si and BAs calculated from

first principles. Each panel is plotted in a log–linear scale to give a clear view of the low-frequency behavior,

while the inset is in linear–linear scale for a clearer view of the high-frequency behavior. (a) and (b) are the TA

and LA modes of diamond at 1000 K, respectively. (c) and (d) are the TA and LA modes of Si at 1000 K,

respectively. (e) and (f) are the acoustic modes of BAs at 1000 and 300 K, respectively. We note that four-

phonon scattering is only important for diamond and Si at higher temperatures. For each of (a), (b) and (c), we

have two fitting curves: the red curve (lower power) fits the low-frequency behavior better, while the yellow

curve (higher power) fits better in the higher-frequency range. Reproduced with permission from [27].

Copyright 2017 the American Physical Society.
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Figure 2.24. Comparison between normal and Umklapp scattering rates for diamond, Si and BAs at T = 300

K calculated from first-principles. Each panel is plotted in a linear–linear scale, while each inset is in a log–

linear scale. Reproduced with permission from [27]. Copyright 2017 the American Physical Society.

(a) (b)

Figure 2.25. The diagram examples for the comparison between (a) the intrinsic four-phonon scattering and

(b) the three-phonon scattering to the second order. Reproduced with permission from [26].
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discussed by Carruthers [102]. In this case, although the scattering is in the same

order as the intrinsic four-phonon scattering, the number of scattering events that

satisfy the energy and momentum selection rule is only 10−3–10−5 of that in the

intrinsic four-phonon scattering in our study. This is because the resonant three-

phonon scattering has a strong requirement that the intermediate state has to be an

existing phonon mode in the q-mesh, while the intrinsic four-phonon scattering has

no such requirement. For example, for Si with a 16 × 16 × 16 q-mesh and the energy-

conservation-tolerant range of 1.24 meV (0.3 THz), the TA mode at =*q (0.5,0,0)
has 4.6 × 107 intrinsic four-phonon events, and only 2.7 × 104 resonant three-phonon

events. For the TA mode at =*q (0.625,0,0), the number of intrinsic four-phonon

events is similarly about 4.6 × 107, while the number of resonant three-phonon

events is only 36. Therefore, the overall three-phonon to the second-order scattering

rate is negligible compared to the intrinsic four-phonon scattering. We note that this

conclusion is consistent with the conjecture in the literature [101].

2.6 Summary and outlook

In summary, predictive calculation of four-phonon scattering realized since 2016 has

enabled the accurate prediction of thermal conductivity for a broader scope of

materials over a much wider temperature range. Generally speaking, strong four-

phonon scattering is originated from either a large scattering potential (e.g., a large

phonon population or strong anharmonicity) or a large scattering phase space, or

both. Based on these two origins, table 2.1 summarizes the categories and examples

in which four-phonon scattering is strong.

The large scattering potential is induced by either high temperature or intrinsic

strongly anharmonic interatomic bonding. The former is seen in general solids.

Actually, raising temperature not only increases anharmonicity but also excites a

greater phonon population that can boost four-phonon scattering. The latter could

be found in many technically important materials, such as most inorganic thermo-

electric materials. In addition, the rocksalt compounds generally have long-ranged

resonant interaction that causes strong anharmonicity. Among them, PbTe and

NaCl have been recently found to have strong four-phonon scattering at room

temperature, while the others also need further investigation.

The large four-phonon scattering phase space is either caused by relatively

restricted three-phonon scattering phase space or large DOS. The former is seen

in the materials with a large acoustic–optical band gap and the two-dimensional

materials with reflection symmetry. The latter is seen for high-frequency phonons, in

particular optical phonons which are usually bunched together and allow a large

λ λ λ λ+ → +1 2 3 4 scattering phase space.

Despite the advances of four-phonon scattering calculation in the past few years,

its impact on a broader range of materials is still open to be examined. Some

immediate examples are the materials showing ultra-low thermal conductivity, such

as the halides (LiF, LiCl, LiBr, LiI, NaF, NaBr, NaI, KF, KCl, KBr, KI, RbF,
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Table 2.1. The categories and examples in which four-phonon scattering is significant based on the two fundamental origins.

Origins Categories Applications Examples examined To be examined

Strong scattering potential

(strong anharmonicity)

High temperature Thermal barrier coating,

nuclear materials, high-T

thermoelectrics

In general In general

Strongly anharmonic

(low-κ) materials

Thermoelectrics, thermal

barrier coating, thermal

energy storage, phase

change materials

Ar, PbTe, NaCl Rocksalt compounds,

halides, hydrides,

chalcogenides, oxides,

others (Bi, Sb), etc

Large scattering phase

space

With large acoustic–optical

phonon band gap

Thermal management BAs, AlP, AlAs, AlSb, c-

GaN, GaP, GaAs, GaSb,

InP, nAs, InSb, etc

I–VII, II–VI binary

compounds with large

mass ratio

2D materials with reflection

symmetry

Thermal management,

surface plasmon

Single-layer graphene Single-layer h-BN

Large DOS: e.g. optical

phonons

Infrared (sensing, radiative

cooling, energy

harvesting,

metamaterials), hot

electron relaxation,

complex crystals

(perovskites, MXenes,

etc)

In general In general
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RbCl, RbBr, RbI, CsF, CsCl, CuCl, CuI, AgI, etc), hydrides (LiH, NaH, KH, RbH,

CuH, etc), chalcogenides (CdSe, BaTe, CdTe, BaS, PbS, PbSe, Bi2Te3, SnS, SnSe,

SnTe, GeTe, etc) and oxides (CdO, SrO, BaO, etc) [12]. Most of them have a

rocksalt structure, and few are zinc-blende or wurtzite. The calculation of four-

phonon scattering in these materials is straightforward since most crystal structures

are simple, with only two basis atoms in a unit cell. Apart from these, it is also

interesting to examine complex crystals such as perovskites and MXenes (transition

metal carbides, nitrides, or carbonitrides), in which there are many optical branches.

The impact of phonon renormalization on three- and four-phonon scattering

urgently needs to be explored in more materials as they both are a representation

of anharmonicity and coupled together with each other. Another interesting

direction is to explore the interplay between four-phonon scattering and other

factors such as pressure [103], interfaces and defects. In addition, we also look

forward to seeing the exploration of other origins that could lead to strong four-

phonon scattering and new thermal transport phenomena.

For ultra-low thermal conductivity materials, an open question is about the

nature of thermal transport since four-phonon scattering could bring the phonon

mean free path down below the interatomic distance, i.e., the Ioffe–Regel limit.

Recently, it was found that for some single crystals such as Tl3VSe4, YbFe4Sb12,

CsSnI3, CsPbI3 and CsPbBr3, even three-phonon scattering could significantly

underestimate the thermal conductivity at room temperature [104]. We suspect

that the inclusion of the four-phonon scattering could bring the predicted thermal

conductivity even lower. Therefore, the particle nature of phonon thermal transport

still needs more investigation and better understanding when four-phonon scattering

is included.

With the accurate prediction of phonon–phonon scattering rate enabled by

adding four-phonon processes, a variety of processes that involve both phonon–

phonon scattering and the scattering between phonons and other particles such as

electrons, photons and polaritons could be re-investigated. As already discussed in

this chapter, the prediction of infrared properties was significantly improved. We

foresee that it will also generate an impact on the understanding and prediction of

the laser heating process, hot electron relaxation, interfacial thermal transport,

electrical transport, etc.

For many years, researchers have been devoted to the search for materials with

extreme thermal properties, e.g., ultra-low or ultra-high thermal conductivity, due to

the intriguing physics and promising cutting-edge applications. We anticipate that

the generalization of four-phonon scattering calculation will create many oppor-

tunities towards this goal. With the rapid increase of the computational power,

application of the three- and four-phonon scattering will generate significantly more

impact on the prediction of thermal transport as well as other phonon-related

applications.

Nanoscale Energy Transport

2-39



References

[1] Maradudin A A and Flinn P A 1961 Anharmonic contributions to vibrational thermody-

namic properties of solids: Part I Ann. Phys. 15 337–59

[2] Maradudin A A and Fein A E 1962 Scattering of neutrons by an anharmonic crystal Phys.

Rev. 128 2589

[3] Maradudin A A, Fein A E and Vineyard G H 1962 On the evaluation of phonon widths

and shifts Phys. Status Solidi B 2 1479–92

[4] Debernardi A, Baroni S and Molinari E 1995 Anharmonic phonon lifetimes in semi-

conductors from density-functional perturbation theory Phys. Rev. Lett. 75 1819–22

[5] Bechstedt F, Käckell P, Zywietz A, Karch K, Adolph B, Tenelsen K and Furthmüller J

1997 Polytypism and properties of silicon carbide Phys. Status Solidi B 202 35–62

[6] Debernardi A 1998 Phonon linewidth in III–V semiconductors from density-functional

perturbation theory Phys. Rev. B 57 12847–58

[7] Lang G, Karch K, Schmitt M, Pavone P, Mayer A, Wehner R and Strauch D 1999

Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors Phys.

Rev. B 59 6182–8

[8] Tang X and Fultz B 2011 First-principles study of phonon linewidths in noble metals Phys.

Rev. B 84 054303

[9] Broido D A, Malorny M, Birner G, Mingo N and Stewart D A 2007 Intrinsic lattice

thermal conductivity of semiconductors from first principles Appl. Phys. Lett. 91 231922

[10] Esfarjani K, Chen G and Stokes H T 2011 Heat transport in silicon from first-principles

calculations Phys. Rev. B 84 085204

[11] Lindsay L, Broido D A and Reinecke T L 2013 First-principles determination of ultrahigh

thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111

025901

[12] Seko A, Togo A, Hayashi H, Tsuda K, Chaput L and Tanaka I 2015 Prediction of low-

thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calcu-

lations and Bayesian optimization Phys. Rev. Lett. 115 205901

[13] Feng T and Ruan X 2014 Prediction of spectral phonon mean free path and thermal

conductivity with applications to thermoelectrics and thermal management: a review J.

Nanomater. 2014 206370

[14] Bao H, Chen J, Gu X and Cao B 2018 A review of simulation methods in micro/nanoscale

heat conduction ES Energy Environ. 1 16

[15] Lindsay L, Hua C, Ruan X and Lee S 2018 Survey of ab initio phonon thermal transport

Mater. Today Phys. 7 106–20

[16] Tong Z, Liu L, Li L and Bao H 2018 Temperature-dependent infrared optical properties of

3c-, 4h- and 6h-SiC Physica B 537 194–201

[17] Joshi Y P, Tiwari M D and Verma G S 1970 Role of four-phonon processes in the lattice

thermal conductivity of silicon from 300 to 1300 K Phys. Rev. B 1 642–6

[18] Ecsedy D and Klemens P 1977 Thermal resistivity of dielectric crystals due to four-phonon

processes and optical modes Phys. Rev. B 15 5957

[19] Bao H, Qiu B, Zhang Y and Ruan X 2012 A first-principles molecular dynamics approach

for predicting optical phonon lifetimes and far-infrared reflectance of polar materials J.

Quant. Spectrosc. Radiat. Transf. 113 1683–8

Nanoscale Energy Transport

2-40



[20] Yang X, Feng T, Kang J S, Hu Y, Li J and Ruan X 2019 Role of higher-order phonon

scattering in the zone-center optical phonon linewidth and the Lorenz oscillator model

(arXiv 1908.05121)

[21] Novikov M, Ositinskaya T, Shulzhenko O, Podoba O, Sokolov O and Petrusha I 1983

Heat-conductivity of cubic boron–nitride single-crystals Dopov. Akad. Nauk Ukrain. RSR

Seriya A 72–5

[22] Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and

Kanatzidis M G 2014 Ultralow thermal conductivity and high thermoelectric figure of

merit in SnSe crystals Nature 508 373–7

[23] Guo R, Wang X, Kuang Y and Huang B 2015 First-principles study of anisotropic

thermoelectric transport properties of IV–VI semiconductor compounds SNSE and SNS

Phys. Rev. B 92 115202

[24] Lindsay L and Broido D A 2008 Three-phonon phase space and lattice thermal

conductivity in semiconductors J. Phys. Condens. Matter 20 165209

[25] Turney J, Landry E, McGaughey A and Amon C 2009 Predicting phonon properties and

thermal conductivity from anharmonic lattice dynamics calculations and molecular

dynamics simulations Phys. Rev. B 79 064301

[26] Feng T and Ruan X 2016 Quantum mechanical prediction of four-phonon scattering rates

and reduced thermal conductivity of solids Phys. Rev. B 93 045202

[27] Feng T, Lindsay L and Ruan X 2017 Four-phonon scattering significantly reduces intrinsic

thermal conductivity of solids Phys. Rev. B 96 161201

[28] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Experimental observation of high

thermal conductivity in boron arsenide Science 361 575–8

[29] Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G and Lv B 2018 High thermal

conductivity in cubic boron arsenide crystals Science 361 579–81

[30] Tian F et al 2018 Unusual high thermal conductivity in boron arsenide bulk crystals Science

361 582–5

[31] Feng T and Ruan X 2018 Four-phonon scattering reduces intrinsic thermal conductivity of

graphene and the contributions from flexural phonons Phys. Rev. B 97 045202

[32] Xia Y 2018 Revisiting lattice thermal transport in PBTE: the crucial role of quartic

anharmonicity Appl. Phys. Lett. 113 073901

[33] Ravichandran N K and Broido D 2018 Unified first-principles theory of thermal properties

of insulators Phys. Rev. B 98 085205

[34] Ziman J M 1960 Electrons and Phonons (London: Oxford University Press)

[35] Kaviany M 2008 Heat Transfer Physics (New York: Cambridge University Press)

[36] Klemens P 1958 Solid State Physics vol 7 (New York: Academic)

[37] Tamura S-I 1983 Isotope scattering of dispersive phonons in Ge Phys. Rev. B 27 858

[38] Casimir H B G 1938 Note on the conduction of heat in crystals Physica 5 495–500

[39] Berman R, Simon F E and Ziman J M 1953 The thermal conductivity of diamond at low

temperatures Proc. R. Soc. Lond. A 220 171–83

[40] Berman R, Foster E L and Ziman J M 1955 Thermal conduction in artificial sapphire

crystals at low temperatures. I. Nearly perfect crystals Proc. R. Soc. Lond. A 231 130–44

[41] Omini M and Sparavigna A 1995 An iterative approach to the phonon Boltzmann equation

in the theory of thermal conductivity Physica B 212 101–12

[42] Omini M and Sparavigna A 1997 Heat transport in dielectric solids with diamond structure

Nuovo Cimento Soc. Ital. Fis. D 19D 1537–63

Nanoscale Energy Transport

2-41



[43] Broido D A, Ward A and Mingo N 2005 Lattice thermal conductivity of silicon from

empirical interatomic potentials Phys. Rev. B 72 014308

[44] Togo A and Tanaka I 2015 First principles phonon calculations in materials science Scr.

Mater. 108 1–5

[45] Tersoff J 1989 Modeling solid-state chemistry: interatomic potentials for multicomponent

systems Phys. Rev. B 39 5566–8

[46] Tersoff J 1990 Erratum: Modeling solid-state chemistry: interatomic potentials for multi-

component systems Phys. Rev. B 41 3248

[47] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Thermal

conductivity of diamond nanowires from first principles Phys. Rev. B 85 195436

[48] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Thermal conductivity of

bulk and nanowire Mg2SixSn1–x alloys from first principles Phys. Rev. B 86 174307

[49] Lindsay L, Broido D and Mingo N 2009 Lattice thermal conductivity of single-walled

carbon nanotubes: beyond the relaxation time approximation and phonon–phonon

scattering selection rules Phys. Rev. B 80 125407

[50] Lindsay L and Broido D A 2012 Theory of thermal transport in multilayer hexagonal

boron nitride and nanotubes Phys. Rev. B 85 035436

[51] Lindsay L, Broido D A and Reinecke T L 2012 Thermal conductivity and large isotope

effect in GaN from first principles Phys. Rev. Letters 109 095901

[52] Ruf T, Henn R, Asen-Palmer M, Gmelin E, Cardona M, Pohl H-J, Devyatych G and

Sennikov P 2000 Thermal conductivity of isotopically enriched silicon Solid State Commun.

115 243–7

[53] Abeles B, Beers D, Cody G and Dismukes J 1962 Thermal conductivity of Ge–Si alloys at

high temperatures Phys. Rev. 125 44

[54] Glassbrenner C J and Slack G A 1964 Thermal conductivity of silicon and germanium from

3 K to the melting point Phys. Rev. 134 A1058

[55] Feng T, Yang X and Ruan X 2018 Phonon anharmonic frequency shift induced by four-

phonon scattering calculated from first principles J. Appl. Phys. 124 145101

[56] Morelli D T, Jovovic V and Heremans J P 2008 Intrinsically minimal thermal conductivity

in cubic I−V−vi2 semiconductors Phys. Rev. Lett. 101 035901

[57] El-Sharkawy A, El-Azm A A, Kenawy M, Hillal A and Abu-Basha H 1983

Thermophysical properties of polycrystalline PBS, PBSE, and PBTE in the temperature

range 300–700 K Int. J. Thermophys. 4 261–9

[58] Håkansson B and Andersson P 1986 Thermal conductivity and heat capacity of solid NaCl

and NaI under pressure J. Phys. Chem. Solids 47 355–62

[59] McCarthy K A and Ballard S S 1960 Thermal conductivity of eight halide crystals in the

temperature range 220 K to 390 K J. Appl. Phys. 31 1410–12

[60] Yukutake H and Shimada M 1978 Thermal conductivity of NaCl, MgO, coesite and

stishovite up to 40 kbar Phys. Earth Planet. Inter. 17 193–200

[61] Wei L, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Thermal

conductivity of isotopically modified single crystal diamond Phys. Rev. Lett. 70 3764–7

[62] Onn D G, Witek A, Qiu Y Z, Anthony T R and Banholzer W F 1992 Some aspects of the

thermal conductivity of isotopically enriched diamond single crystals Phys. Rev. Lett. 68 2806–9

[63] Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R and Banholzer W F 1993

Thermal conductivity of diamond between 170 and 1200 K and the isotope effect Phys. Rev.

B 47 14850–6

Nanoscale Energy Transport

2-42



[64] Berman R, Hudson P R W and Martinez M 1975 Nitrogen in diamond: evidence from

thermal conductivity J. Phys. C: Solid State Phys. 8 L430

[65] Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B and Cahill D G 2018

High thermal conductivity in isotopically enriched cubic boron phosphide Adv. Funct.

Mater. 28 1805116

[66] Yang X, Feng T, Li J and Ruan X 2019 Stronger role of four-phonon scattering than three-

phonon scattering in thermal conductivity of III-V semiconductors at room temperature

Phys. Rev. B 100 245203

[67] Jeżowski A, Stachowiak P, Plackowski T, Suski T, Krukowski S, Boćkowski M, Grzegory

I, Danilchenko B and Paszkiewicz T 2003 Thermal conductivity of GaN crystals grown by

high pressure method Phys. Status Solidi B 240 447–50

[68] Hess S, Taylor R, O’Sullivan E, Ryan J, Cain N, Roberts V and Roberts J 1999 Hot carrier

relaxation by extreme electron–LO phonon scattering in GaN Phys. Status Solidi B 216 51–5

[69] Gervais F and Piriou B 1975 Temperature dependence of transverse and longitudinal optic

modes in the α and β phases of quartz Phys. Rev. B 11 3944–50

[70] Dean K, Sherman W and Wilkinson G 1982 Temperature and pressure dependence of the

Raman active modes of vibration of α-quartz Spectrochim. Acta A 38 1105–8

[71] Ulrich C, Debernardi A, Anastassakis E, Syassen K and Cardona M 1999 Raman

linewidths of phonons in Si, Ge, and Sic under pressure Phys. Status Solidi B 211 293–300

[72] Herchen H and Cappelli M A 1993 Temperature dependence of the cubic boron nitride

Raman lines Phys. Rev. B 47 14193–9

[73] Hadjiev V G, Iliev M N, Lv B, Ren Z F and Chu C W 2014 Anomalous vibrational

properties of cubic boron arsenide Phys. Rev. B 89 024308

[74] Lockwood D, Yu G and Rowell N 2005 Optical phonon frequencies and damping in AlAs,

GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy Solid

State Commun. 136 404–9

[75] Turner W J and Reese W E 1962 Infrared lattice bands in AlSb Phys. Rev. 127 126–31

[76] McCluskey M D, Haller E E and Becla P 2001 Carbon acceptors and carbon–hydrogen

complexes in AlSb Phys. Rev. B 65 045201

[77] Cuscó R, Domènech-Amador N, Novikov S, Foxon C T and Artús L 2015 Anharmonic

phonon decay in cubic GaN Phys. Rev. B 92 075206

[78] Irmer G, Wenzel M and Monecke J 1996 The temperature dependence of the LO(T) and

TO(T) phonons in GaAs and InP Phys. Status Solidi B 195 85–95

[79] Stimets R W and Lax B 1970 Reflection studies of coupled magnetoplasma–phonon modes

Phys. Rev. B 1 4720–35

[80] Hass M and Henvis B 1962 Infrared lattice reflection spectra of III–V compound

semiconductors J. Phys. Chem. Solids 23 1099–104

[81] Lindsay L and Broido D A 2011 Enhanced thermal conductivity and isotope effect in

single-layer hexagonal boron nitride Phys. Rev. B 84 155421

[82] Lindsay L, Broido D A and Mingo N 2010 Flexural phonons and thermal transport in

graphene Phys. Rev. B 82 115427

[83] Lindsay L, Li W, Carrete J, Mingo N, Broido D A and Reinecke T L 2014 Phonon thermal

transport in strained and unstrained graphene from first principles Phys. Rev. B 89 155426

[84] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N and Mauri F 2014 Thermal

conductivity of graphene and graphite: collective excitations and mean free paths Nano

Lett. 14 6109–14

Nanoscale Energy Transport

2-43



[85] Faugeras C, Faugeras B, Orlita M, Potemski M, Nair R R and Geim A K 2010 Thermal

conductivity of graphene in corbino membrane geometry ACS Nano 4 1889–92

[86] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S

2012 Thermal conductivity of isotopically modified graphene Nature Mater. 11 203–7

[87] Xu X et al 2014 Length-dependent thermal conductivity in suspended single-layer graphene

Nat. Commun. 5 3689

[88] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W,

Miao F and Lau C N 2008 Extremely high thermal conductivity of graphene: prospects for

thermal management applications in nanoelectronic circuits Appl. Phys. Lett. 92 151911

[89] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010

Dimensional crossover of thermal transport in few-layer graphene Nat. Mater. 9 555–8

[90] Vallabhaneni A K, Singh D, Bao H, Murthy J and Ruan X 2016 Reliability of Raman

measurements of thermal conductivity of single-layer graphene due to selective electron–

phonon coupling: a first-principles study Phys. Rev. B 93 125432

[91] Gu X, Fan Z, Bao H and Zhao C Y 2019 Revisiting phonon–phonon scattering in single-

layer graphene Phys. Rev. B 100 064306

[92] Lindsay L and Broido D A 2010 Optimized Tersoff and Brenner empirical potential

parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and

graphene Phys. Rev. B 81 205441

[93] Xie H, Chen L, Yu W and Wang B 2013 Temperature dependent thermal conductivity of a

free-standing graphene nanoribbon Appl. Phys. Lett. 102 111911

[94] Li Q-Y, Takahashi K, Ago H, Zhang X, Ikuta T, Nishiyama T and Kawahara K 2015

Temperature dependent thermal conductivity of a suspended submicron graphene ribbon J.

Appl. Phys. 117 065102

[95] Chen S et al 2011 Raman measurements of thermal transport in suspended monolayer

graphene of variable sizes in vacuum and gaseous environments ACS Nano 5 321–8

[96] Lee J-U, Yoon D, Kim H, Lee S W and Cheong H 2011 Thermal conductivity of suspended

pristine graphene measured by Raman spectroscopy Phys. Rev. B 83 081419

[97] Lindsay L, Broido D A and Mingo N 2011 Flexural phonons and thermal transport in

multilayer graphene and graphite Phys. Rev. B 83 235428

[98] Kim S I et al 2015 Dense dislocation arrays embedded in grain boundaries for high-

performance bulk thermoelectrics Science 348 109–14

[99] Hong M, Chasapis T C, Chen Z-G, Yang L, Kanatzidis M G, Snyder G J and Zou J 2016

n-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-

frequency phonon scatterings and synergistic carrier scatterings ACS Nano 10 4719

[100] Xu B et al 2017 Nanocomposites from solution-synthesized PbTe–BiSbTe nanoheteros-

tructure with unity figure of merit at low–medium temperatures (500–600 K) Adv. Mater.

29 1605140

[101] Joshi Y P, Tiwari M D and Verma G S 1969 Role of four-phonon processes in the lattice

thermal conductivity of silicon from 300 to 1300 K Phys. Rev. B 1 642

[102] Carruthers P 1962 Resonance in phonon–phonon scattering Phys. Rev. 125 123–5

[103] Ravichandran N K and Broido D 2019 Non-monotonic pressure dependence of the thermal

conductivity of boron arsenide Nat. Commun. 10 827

[104] Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, McGuire M A and Lindsay L

2018 Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 Science

360 1455–8

Nanoscale Energy Transport

2-44


