Modeling, Improving, and Scaling of Lubricating Interfaces in Axial Piston Machines

June 4th, 2019

Lizhi Shang

Post doctoral research assistant
Maha Fluid Power Research Center
Purdue University
Swashplate type axial piston machine applications

- High operating pressure
- Variable displacement
- High power density
- High efficiency

Axial piston pumps and motors

0.5cc - 1000cc
Swashplate type axial piston machine

Introduction
Modeling
Innovation
Scaling
Outlook and Conclusions

Cylinder block/Valve plate interface

Piston / Cylinder interface

Slipper / Swashplate interface

Videos from Schenk, A.
Challenge of lubricating interfaces design

Introduction
Modeling
Innovation
Scaling
Outlook and Conclusions

Complicated interactive physical phenomena
- Piston micro motion
- Slipper micro motion
- Block micro motion

Challenge of lubricating interfaces design

Complicated interactive physical phenomena
- Piston micro motion
- Slipper micro motion
- Block micro motion

CCEFP Summit in Honor of Monika Ivantysynova — Dr. Lizhi Shang
Interactive physical phenomena

Challenge of lubricating interfaces design

- Fluid film behavior
- Elastic deformation
- Heat transfer
- Micro motion

Videos from Zecchi, M.
Challenge of lubricating interfaces design

Lubricating interfaces are difficult to design, due to the interactive physical phenomena including:

- Macro and micro motion
- Fluid hydrostatic and hydrodynamic effects
- Viscous shear and energy dissipation
- Heat transfer
- Elastic deformation
- Surface texture and Surface shaping
Swashplate type axial piston machine

Efficiency
- Up to 50% contribution to FP system power loss

Robustness
- Main contributor to pump and motor failure

Designing cost
- More than 80% design effort on Lubricating interfaces
Research Topics

Introduction Modeling Innovation Scaling Outlook and Conclusions

Modeling
- Essential insight of lubricating interface behavior

Improving
- Efficient and Robust design
- Designing process

Scaling
- Is lubricating interface scalable
 - No, why not
 - Yes, How

Efficiency

Robustness

Designing cost
Axial piston machine modeling approach

Fluid-Structure and Thermal Interaction

- **Solid Body Thermal Deformation**
- **Solid Body Heat Transfer**

Fluid-Structure Interaction

Elastic Deformation

FVM Fluid model

Modeling

Fluid model: Pressure

\[\sum_i \Gamma_i (\nabla p)_i A_i = \int_{V} S dV \]

Reynolds Equation

Fluid model: Temperature

\[\rho c_p V \cdot \nabla T - \nabla \cdot (\lambda \nabla T) = \mu \Phi_D \]

Energy Equation
Axial piston machine modeling approach

Introduction
- Modeling
- Innovation
- Scaling
- Outlook and Conclusions

Modeling

Pressure solver overhaul
- Validated load carrying capability prediction.
- Robust and accurate scheme for low film thickness and contact region.

Shang, L. (2018 dissertation)

Temperature solver overhaul
- Convection
- Conduction
- Energy dissipation
- Compression
- Expansion
- Temperature changing rate

Integrated heat transfer model
- Robust scheme allows for extreme operating temperature
- Converge with less iteration

Experimental validation

EHD test pump
Bushings surface temperature distribution measurement during operation

Experimental validation

EHD test pump

Bushing surface temperature distribution measurement during operation

- Temperature at 2.5mm from DC
- Temperature at 26.15mm from DC

准确的流体行为预测（accurate fluid behavior prediction）

Measurement
Before temperature overhaul
After temperature overhaul

Shang, L (2018 dissertation)
From modeling to innovation

Modeling

- **Pump lifetime study**

- **Pump design optimization**

Innovation

- **Micro shaping concept**

- **Virtual prototyping**

Insight of lubricating interface behavior

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang
Introduction
Modeling
Innovation
Scaling
Outlook and Conclusions

Scaling

- Lubricating interfaces are **difficult to design**
- Wide range of demanded size

> 2000 times in size

1. Are lubricating interfaces linearly scalable?
2. Is there an effective scaling rule?
Scalability of elastic deformation

Linear scaling rule:

\[\lambda = \left(\frac{V}{V_0} \right)^{\frac{1}{3}} \]

\[h = \lambda \cdot h_0 \quad l = \lambda \cdot l_0 \]

\[p = p_0 \quad T = T_0 \]

Elastic deformation due to thermal and pressure load

\[\Delta h_2 = \lambda \cdot \Delta h_1 \]

Hydrostatic/hydrodynamic pressure distribution

\[\lambda = 1 \]

\[\lambda = 2 \]

Not scalable
Scalability of fluid domain heat transfer

Linear scaling rule:

\[
\lambda = \left(\frac{V}{V_0} \right)^{\frac{1}{3}}
\]

\[h = \lambda \cdot h_0 \quad l = \lambda \cdot l_0\]

\[p = p_0 \quad T = T_0\]

Fluid domain temperature

- Not scalable
- \(\lambda = 1\)
- \(\lambda = 2\)

Solid domain heat transfer

- Not scalable
- \(\lambda = 1\)
- \(\lambda = 2\)
Are lubricating interfaces linearly scalable?
- No
- Only because that hydrostatic/hydrodynamic pressure distribution, and fluid/solid domain temperature distribution are not scalable.

Is there an effective scaling rule?
- Yes
- Scaling guide has been proposed based on the findings from the scaling study.
- More effective scaling rules are proposed for three lubricating interfaces.

Where are we on axial piston machines modeling?

Power loss distribution:
Simulation vs measurement

52 cc unit, 50°C, 50%, 2000 rpm, 170 bar

Outlook

- Micro-scale tribological characterization
 - Measurement-driven simulation
 - Novel test rig for small contact patch measurement

75% accurate on power loss prediction
Outlook

- Micro-scale tribological characterization
 - Measurement-driven simulation
 - Novel test rig for small contact patch measurement

- Computational efficiency optimization
 - Contribution-based computational power allocation
 - AI-aided simulation
Conclusion

- Lubricating interfaces in axial piston machines are difficult to design
- Modeling tool helps to understand the essential insight of lubricating interface behavior
- Innovative design and innovative design process are made possible by the modeling tool
- Lubricating interface are not linear scalable due to thermal and hydrostatic/dynamic effects only
- Outlook of the model development is discussed
Thank you!