EFFICIENT, COMPACT, AND SMOOTH VARIABLE PROPULSION MOTOR

Grey Boyce-Erickson, John Voth, James Van de Ven
CCEFP Summit – Purdue 2019
June 5th, 2019
Project Team

• University of Minnesota
 – Jim Van de Ven, PI
 – Tom Chase, co-PI
 – Perry Li, co-PI
 – Mike Gust, Project Manager
 – Grey Boyce-Erickson, GRA
 – Nate Fulbright, GRA
 – Justinus Hartoyo, GRA
 – John Voth, GRA
 – Shawn Wilhelm, Consultant
 – Marvin Flaschenriem, Consultant

• Milwaukee School of Engineering
 – Paul Michael, PI
 – Ninaad Gajghate, GRA
 – Jordan Saikia, GRA

• Bobcat Doosan

• Poclain Hydraulics
Project Overview

• Many off-highway vehicles use hydrostatic drives.
 – Variable displacement axial piston pump
 – Fixed displacement motor

• Pump displacement sets vehicle speed
 – Pump is inefficient at low displacements

• Variable displacement motor would decouple pump displacement and vehicle speed
Value Propositions

- **Motor Efficiency**: Saves fuel, increases power
- **Low Torque Ripple**: Improves control and productivity

- **Variable Displacement Motor**: Increases transport speed and higher system efficiency
- **High Displacement Motor**: Eliminates gearbox
- **Scalable Motor**: Applicable to wide variety of off-highway vehicles
Project Objectives

• Efficiency >90% above 50% displacement
• Torque ripple <5% of the mean torque
• Reduce vehicle fuel consumption by 30%
• Power density >5 kW/kg
• Cost <$4/kW
Low Speed High Torque (LSHT) direct drive hydraulic motor with track drive sprocket
Model Optimization

• 10 independent variables
 • Piston trajectory
 • Linkage geometry
 • Linkage location

• 3 objectives
• Multiple solutions that meet objectives
• Multi Objective Genetic Algorithm
Objective Functions

- Efficiency
 - Throttling losses
 - Frictional losses
- Torque Ripple
- Size
 - Diameter of outermost point of motor

Penalty Functions

- Efficiency
 - Cavitation
 - Excessive joint forces
- Size
 - Interference between
 - Bearings
 - Linkage modules
 - Adjustable ground pivots and the cam
 - Radius of roller follower too large
Pareto Front

Optimization Results

Efficiency [%]

Torque Ripple [%]

Selected Individual

Approximate Motor Diameter [mm]
Individual’s Results

Efficiency

[Graph showing efficiency vs. fractional displacement]

Torque Ripple

[Graph showing torque ripple vs. fraction of cycle]
Future Work

✓ Year One
 – Modeling
 – Early optimizations

☐ Year Two – Single Cylinder Prototype
 – More optimizations
 – Detailed mechanical design (CAD)
 – Experimental model validation

☐ Year Three – Full Prototype
 – Finalize scaled multi-cylinder design
 – Test multi-cylinder prototype
Acknowledgement

• This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Vehicle Technologies Office Award Number DE-EE0008335

Disclaimer: “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
THANK YOU

ANY QUESTIONS?

Grey Boyce-Erickson
University of Minnesota
boyce042@umn.edu

John Voth
University of Minnesota
vOTH0036@umn.edu