

Maha Fluid Power Research Center

Intensive Mini-Course on HYDROSTATIC PUMPS AND MOTORS

Contact Information

Lizhi Shang: <u>shangl@purdue.edu</u> Andrea Vacca: <u>avacca@purdue.edu</u>

How to Register

Please reach out to any of the above contact persons for the registration link and discount code if applicable.

Dates

Oct 9th – 13th, 2023 Monday – Thursday whole days and Friday morning

Target audience

This course is designed for industry professionals who have

- Engineering degrees or equivalent
- o Basic understanding of the positive displacement machine principle

Course Description

The design and optimization of positive displacement pumps and motors are one of the interests of the Maha industrial members. This is an intensive course designed to help professionals from Maha industrial members who have an engineering background gain fundamental knowledge and skills on hydrostatic machines. The five-day course covers a) the essential physics that helps to understand the operation of performance of hydraulic machines, b) the working principles of common types of hydrostatic pumps and motors, c) an in-depth study into piston and gear machines, and d) introduction and hands-on experience of using the computer simulation in assisting design and optimization of pumps and motors.

The course includes class lectures, in-class practices, numerical simulation, and hands-on experience in pump steady-state performance measurement. Simulation software Simcenter

Amesim and Simerics MP+ will be used during the computer lab sessions. No additional fee will be charged to the course participants for using the software over the duration of the course.

At the end of day 5, all participants who completed the course will be granted a Maha mini-course completion certificate.

Textbook

Hydrostatic pumps and motors Jaroslav Ivantysyn and Monika Ivantysynova 2001 Akademia Books International

Reprints (Spiral binding) are available at the Follett's Purdue Bookstore 1265 W. State Street West Lafayette, IN 47906 (765)743-9642 purdue@bkstr.com

Learning Objectives

- 1. Understand the common type of hydrostatic pumps and motors's working principles and advantages/disadvantages.
- 2. The dynamics and kinematics of axial piston machines and gear machines
- 3. Identify common sources of power losses and their analytical expression with proper assumptions.
- 4. Conduct hydrostatic pump steady state performance test.
- 5. Develop a piston pump lumped parameter simulation in Amesim.
- 6. Practice simulation of a piston pump in Simerics and predicts the flow limitation due to cavitation.

Tentative Schedule

The table below provides the schedule for the minicourse, which will occur from Monday to Thursday and Friday morning.

Day	Торіс
Monday	Refresh the working principle of the positive displacement machine
Lecture	Displacement volume
	 Theoretical flow rate and torque of pumps and motors
	• Volumetric, hydromechanical, and total efficiency of pumps and motors
	 Steady-state measurement of hydrostatic pumps and motors

	Overview of different types of pumps and motors and their working principle
	(Part 1)
	Overview of the characteristics and common application of different
	types of hydrostatic machines
	 Piston types – axial and radial Casada axial and radial
	 Gear types – external and internal
	 Working principle and application of the above-mentioned common
D. A a va al a v	types of positive displacement machine
wonday	Hydrostatic machine steady state performance test
Lad	 Introduction to the hydraulic circuit and DAQ system
	Conduct steady-state test
	Interpolate the measurement results
Tuesday	Overview of different types of pumps and motors and their working principle
Lecture	(Part 2)
	 Overview of the characteristics and common application of different
	types of hydrostatic machines
	o Gerotor
	o Vane
	o Screw
	 Working principle and application of the above-mentioned common
	types of positive displacement machine
	Definition of common fluid properties
	Viscosity
	Bulk modulus
	Density
	Laminar flow in gap analytical calculations
	 Calculation of viscous friction between two parallel surfaces
	 Friction (viscous stress) on the surface and leakage flow
	 How to reduce (balance) friction and leakage in lubricating gaps
	Compressibility of the fluid and its effects on pumps and motors' performance
	 P-V diagram considering compressible fluid
	 Calculation of the volumetric flow rate considering compressibility
	Compression loss
	 Common way to mitigate the challenge due to compressibility
Tuesday	Lumped parameter model I:
Lab	 Introduction to Amesim simulation
	 Settings of fluid properties
	 Components – hydraulic cylinder, orifice
	 Develop a single-piston plunger pump
	 Post-process simulation results
Wednesdav	Piston machine kinematics and dynamics
Lecture	Piston stroke and velocity

	Pressure and flow in a single displacement chamber
	Kinematic flow ripple
	 Swashplate forces and moments
	 Piston forces and moments (piston free body diagram)
	 Cylinder block forces and moments (cylinder block free body diagram)
	Cavitation and Aeration
	 Density/pressure relationship considering static cavitation
	 Impact of cavitation in pumps and motors
Wednesday	Lumped parameter model II:
Lab	 Develop a swashplate-type piston pump lumped parameter model
	 Calculate flow ripples and swashplate forces and moments
Thursday	Piston machine design parameters and their associated performance impact
Lecture	 Piston/cylinder interface friction and leakage calculation
	 Cylinder block/valve plate interface friction and leakage calculation
	 Slipper/swashplate interface friction and leakage calculation
	Piston machine common designs
	 Common design part A: valve plate groove, filled/hollow piston, offset
	and gamma angle
	 Common design part B: male/female piston, piston groove, multi-land
	slipper, step slipper vs orifice, spherical cylinder block, cylinder block
	balance land, slipperless design
	Gear machine kinematics and dynamics
	 Involute gear profile (external and internal)
	Gerotor gear profile
	 Definition of the displacement and the displacement volume over time (external, internal, and gerotor)
	 Leakage paths in gear machines (external, internal, and gerotor)
	 Kinematic flow ripple (external, internal, and gerotor)
	 Forces and moments on driving gear and driven gear (external)
	 Forces and moments on journal bearing bushing (external)
	Gear machine design parameters and their associated performance impact
	Number of gears
	Width of gears
	Gear geometry
	Meshing groove and high-speed groove
	Gear machine common designs
	Journal bearing bushing/balance plate
	Consideration of gear motors
Thursday	CFD simulation:
Lab	 Creating mesh of an existing piston pump geometry

	Conduct CFD simulation and interpolate convergence criteria
	 Conduct CFD simulation at multiple operating points and map the
	performance curve
	 Visualizing simulation result (pressure distribution, flow velocity, gas
	fraction)
Friday	Swashplate control system
Lecture	 Schematics of a displacement control system
	 Schematics of a pressure compensation system
	Discussion of hydrodynamic effects and deformation effects on pump
	performance
	 Definition and challenge of EHL
	 Pressure distribution of a sliding bearing
	 Pressure distribution of a journal bearing
	• Demonstrate a Multics simulation result of journal bearing with and
	without elastic deformation
	 Demonstrate the deformation magnitude of critical components in
	piston pumps and gear machines using Multics
	Discussion of thermal effects on pump performance
	Concept of T-EHL
	Demonstrate Multics simulation result with and without consideration
	of fluid domain heat transfer (piston pump)
	Demonstrate the thermal deformation magnitude (piston pump)

Attendance

The minicourse will open to in-person participants at Purdue University. Number of participants is limited to the classroom/lab capacity.

Cost

Free registration for:

- 1 participant from Maha Fluid Power Research Center Basic Members
- 3 participants from Maha Fluid Power Research Center Executive Members

\$ 1,500 / additional participants from members (*)

\$3,500 / participant for non-members (*)

(*) registration priority goes to members benefitting from free registration as detailed above

Registration includes all course material (book is not included), lunches, and coffee breaks.

No dinner/hotel accommodation provided.