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Abstract9

The two-dimensional laser-based Ångstrom method measures the in-plane
thermal properties for anisotropic film-like materials. It involves periodic laser
heating at the center of a suspended film sample and records its transient ther-
mal response by infrared imaging. These spatiotemporal temperature data must
be analyzed to extract the unknown thermal conductivity values in the or-
thotropic directions, an inverse parameter fitting problem. Previous develop-
ment demonstration of the metrology used a least squares fitting method that
relies on numerical differentiation to evaluate the second-order partial deriva-
tives in the differential equation describing transient conduction in the physical
system. This fitting approach is susceptible to measurement noise, introduc-
ing high uncertainty in the extracted properties when working with noisy data.
For example, when noise of signal-to-noise ratio of 10 is added to simulated
amplitude and phase data, the error in the extracted thermal conductivity can
exceed 80 %. In this work, we introduce a new alternative inverse parameter
fitting approach using physics-informed neural networks (PINNs) to increase
the robustness of the measurement technique for noisy temperature data. We
demonstrate the effectiveness of this approach even for scenarios with extreme
levels of noise in the data. Specifically, the PINNs-approach accurately extracts
the properties to within 5 % of the true values even for high noise levels (signal-
to-noise ratio of 1). This offers a promising avenue for improving the robustness
and accuracy of advanced thermal metrology tools that rely on inverse param-
eter fitting of temperature data to extract thermal properties.
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Nomenclature13

α Thermal Diffusivity m2 s−1
14

ω Angular Frequency of Heating rad s−1
15

ϕ Phase Delay rad16

ρ Density kgm−3
17

A Amplitude of Steady Periodic Temperature Oscillations K18

cp Specific Heat J kg−1 K−1
19

f Frequency of Heating Hz20

H Sample Thickness m21

h Convective Heat Transfer Coefficient Wm−2 K−1
22

kx Thermal Conductivity in In-Plane x-Direction Wm−1 K−1
23

ky Thermal Conductivity in the In-Plane y-Direction Wm−1 K−1
24

kz Thermal Conductivity in the Cross-Plane z-direction Wm−1 K−1
25

L Loss Function26

n Number of Grid Points or Pixels27

P Real Part of Complex Temperature Amplitude K28

q′′ Heat Flux Wm−2
29

Q Imaginary Part of Complex Temperature Amplitude K30

r Radius m31

SNR Signal-to-Noise Ratio32

T Temperature K33

t Time s34

w Loss Weight35
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1. Introduction36

Heat generated in electronic devices such as semiconductor chips and pack-37

ages must be dissipated to ensure reliability and operation below temperature38

limits. Heat must flow from within the package to the surrounding ambient39

or coolant through a series of thermal management components that may in-40

clude thermal interface materials, heat spreaders, and heat sinks. Optimum41

thermal management is typically achieved by using materials with high thermal42

conductivity, k, so as to minimize the resistance to heat flow. Traditionally,43

high-thermal-conductivity metals with k values ranging from ∼ 100-400 W m−1
44

K−1 have been used as heat spreaders. But with recent advances in the materials45

technology, there is a growing interest in engineered materials and composites46

which can offer higher thermal conductivities than conventional metals [1, 2, 3].47

However, such materials can often exhibit anisotropic thermal properties due48

to their composite nature or manufacturing process. As an example, naturally49

occurring isotropic graphite has a k of ∼ 50 W m−1 K−1, but synthetic graphite50

can have an in-plane k of up to 2000 W m−1 K−1, while only ∼ 10 W m−1 K−1
51

in the through-thickness direction [4].52

Although there is no standard technique to measure the in-plane k of anisop-53

tropic materials, there are a couple of conventional techniques such as the54

Ångstrom method [5] and the laser-flash method [6] which have been adapted55

for such measurements. Both of these techniques are generally applicable for56

measuring k of ‘bulk’ materials given an assumption of isotropic properties; to57

characterize the properties of anisotropic materials, these techniques rely on58

the fabrication of multiple samples cut along different orthotropic directions59

to measure the properties in these directions. Recent technique developments60

have sought thermal characterization approaches that can accurately measure61

in-plane anisotropic properties of materials in one measurement with a single62

sample. To bridge this gap, we recently introduced a new method for the mea-63

surement of in-plane thermal properties of isotropic and anisotropic films or64

sheets [7].65

Briefly, our method is based on the traditional Ångstrom’s method (for char-66

acterization of thermal diffusivity along one direction in thin and long rod-like67

materials), but extended for characterization in two dimensions to measure the68

in-plane thermal properties of films and sheets. This two-dimensional technique69

measures the steady-periodic temperature response of a material to periodic70

heating using a laser. Spatio-temporal temperatures are sensed using high-71

resolution infrared (IR) imaging. The two-dimensional discretized heat diffu-72

sion equation (along the two in-plane directions) in the frequency domain is73

evaluated throughout the spatial domain to extract the thermal properties of74

the material, using the steady-periodic response of the material. The amplitude75

of oscillations and the phase delay at each pixel location in the domain are cal-76

culated using a Fourier transform. This information is then used to perform77

an inverse parameter fitting to extract the thermal properties of the material78

using a numerical least squares fitting algorithm. However, the requirement79

to numerically evaluate derivatives from the measurement data in this fitting80
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approach makes the thermal property extraction potentially sensitive to noise81

in the measurement, especially when the magnitude of temperatures oscilla-82

tions and phase delay are relatively low. In this work, we present an alternative83

method for inverse parameter fitting based on physics-informed neural networks84

(PINNs) to increase the tolerance to noise.85

Physics-informed neural networks are deep learning frameworks that com-86

bine the efficiency of machine learning algorithms and the fundamental physics87

principles to solve a partial differential equation (PDE), or a system of PDEs,88

describing a physical system. They have gained immense popularity over con-89

ventional numerical modeling tools for performing certain tasks that benefit90

from the automatic differentiation capabilities of neural networks to evaluate91

higher order derivatives [8], thus avoiding the discretization errors typically en-92

countered in numerical schemes. PINNs can be used to solve both forward and93

inverse problems. In the context of the current work, solving a forward problem94

could mean estimating the temperature fields for known or unknown boundary95

conditions, given temperature measurement data available at limited collocation96

points. On the other hand, this same trained model could be used to solve an97

inverse problem of deducing the material properties. For instance, Cai et al. [9]98

demonstrate this two-fold capability of PINNs in the case of Stefan phase-change99

problems, wherein limited temperature data measurements within the system100

are used within a PINNs framework to resolve the temperature distributions in101

each phase, while also inferring their respective thermal diffusivity values.102

All measurement data is subject to some level of noise that arises from in-103

accuracy of sensors, measurement errors, and inherent variability of complex104

systems. PINNs, in their basic form or modified versions [10, 11, 12], are par-105

ticularly useful for making predictions/estimations that are robust despite high106

noise in the measurement data used for model training or evaluation. Garcia et107

al. [13] use PINNs to successfully reconstruct electrical properties from MREPT108

(magnetic resonance electrical property tomography) of noise-contaminated im-109

ages. Oommen et al.. [14] demonstrate the utility of a basic PINNs model to110

solve inverse heat transfer problems in the case of rectangular pin fins (with111

different material properties and subjected to different boundary conditions).112

They show that a PINNs approach is faster and more robust to noise in the113

data, even compared to conventional machine learning techniques.114

In this work, we employ PINNs to analyze data obtained from the 2D laser-115

based Ångstrom method. By doing so, we circumvent the challenges linked to116

numerical differentiation, and thereby demonstrate the robustness of PINNs ap-117

proach for accurate inverse parameter estimation in the presence of noise that118

is added to the data. Our work thus presents an alternative data processing119

technique that complements the 2D laser-based Ångstrom method, enhancing120

its capability in measuring the thermal conductivity of anisotropic film-like ma-121

terials. Section 2 of this paper overviews the 2D laser-based Ångstrom method,122

the experimental setup, and the least squares method for inverse estimation of123

the in-plane thermal properties. Section 3 describes the methodology used to124

generate datasets for the purpose of this study and the PINNs-based approach125

for the inverse fitting of the thermal properties. Section 4 compares the per-126
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formance of the least squares fitting approach and the PINNs approach under127

different levels of noise.128

2. Background of the 2D Laser-Based Ångstrom Measurement Tech-129

nique130

Figure 1: (a) Schematic showing the cross-sectional front view of the 2D laser-based
Ångstrom measurement technique and representative (simulated) (b,c) amplitude and (d,e)
phase delay maps of the steady periodic temperature signal that , in experiments , would
be measured using the IR camera. Briefly, the sample is suspended over a heat sink with a
circular opening. Heat spreads radially through the sample from the absorber disk, which
is attached to one side of the sample and heated with a laser or other light source. An IR
camera measures the resultant transient temperature distribution across the opposite surface
of the sample. From these spatiotemporal temperature data, the amplitude and phase delay
are extracted point-by-point. Panels (b) and (d) present clean amplitude and phase delay
data, while panels (c) and (e) illustrate the data with noise added to stimulated data in the
frequency domain (SNR = 1).

The 2D laser-based Ångstrom method, a metrology technique developed by131

the authors [7] for the characterization of isotropic and anisotropic films and132

sheets, extends the principles of the traditional Ångstrom method of thermal133

diffusivity measurement, which was designed for thin and long rod-like materials134

(1D conduction), to two-dimensional conduction in thin films and sheets. The135

experimental setup is schematically represented in Figure 1(a). A non-contact136

and stationary heat source, such as a focused laser beam or an IR-based LED137

light source, is incident at the center of the back side of the specimen, which138

is suspended over a metallic heat sink with a circular opening. For specimens139
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that may be transparent to the wavelength of irradiation from the heat source,140

a thin and thermally-black metallic circular disk may be attached to the under-141

side of the sample to act as an absorber. The time-periodic heat source causes a142

periodic temperature oscillation in the specimen, T (x, y, t), which is measured143

from the top side using an IR camera after the specimen reaches a thermally144

steady-periodic state. Figures 1(b) and (d) show simulated (see Section 3.1)145

representative amplitudes of oscillation and associated phase delay in the sus-146

pended region of a hypothetical material with thermal conductivity of kx = ky147

= 10 W m−1 K−1, thickness of 500 µm, and at a heating frequency of 10 mHz.148

In real experiments, the data has noise and 1(c) and (e) illustrate the case data149

with noise added to the frequency domain data (see Section 3.2).150

It must be noted that this technique assumes that the temperature gradients151

across the thickness of the specimen are negligible, relative to the gradients in152

the in-plane direction. This assumption can be realized by setting the frequency153

of heating such that the thermal penetration depth into the specimen exceeds154

the material thickness. This measurement is based on the principles of using155

the amplitude and phase lag of the steady-periodic temperature response of the156

material, and hence the thermal property extraction is independent of the heat157

input or the boundary conditions at the periphery of specimen.158

The measured temperature response satisfies the 2D heat diffusion equation159

assuming in-plane heat conduction and convective losses to the ambient air as160

∂

∂x

(
kx

∂T

∂x

)
+

∂

∂y

(
ky

∂T

∂y

)
− 2h(T − T∞)

H
= ρCp

∂T

∂t
(1)

where h is the ambient convective heat transfer coefficient, T∞ is ambient tem-161

perature,H is the thickness of the material, ρ is the density, and Cp is the specific162

heat capacity of the specimen. For materials with in-plane anisotropy, thermal163

conductivity differs in the in-plane coordinate directions as k = kxx̂+ ky ŷ. An164

inverse parameter fitting method is required to extract the in-plane thermal165

conductivities of the material that best satisfies this heat diffusion equation. If166

convection is present, the heat transfer coefficient h is also an unknown that167

must be simultaneously extracted.168

Fourier transforms are used to calculate the amplitude of temperature oscil-169

lations and the phase delay at each discrete spatial (pixel) location in the spec-170

imen domain. A time-periodic temperature solution in the frequency domain is171

assumed for the suspended region of the specimen, which can be expressed as:172

T (x, y, t)− T∞ = [P (x, y) + iQ(x, y)]eiωt, (2)

where eiωt accounts for the oscillatory behavior of the solution, ω = 2πf is173

the angular frequency of periodic heating, and P (x, y) and Q(x, y) are the174

real and imaginary parts of the complex amplitude of oscillation. Substituting175

this solution into Equation 1 and equating the real and imaginary parts of the176

resultant equations, the following set of equations is obtained that is valid at177

each point in the suspended region and assumes homogeneity in the material178
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properties:179

kx
∂2P

∂x2
+ ky

∂2P

∂y2
− 2hP

H
= −ρCpωQ (3a)

180

kx
∂2Q

∂x2
+ ky

∂2Q

∂y2
− 2hQ

H
= ρCpωP (3b)

Evaluating these equations at each pixel results in a system of algebraic181

equations, where N denotes the number of data points in the domain.182 

∂2P1

∂x2
∂2P1

∂y2
−2P1

H

.. .. ..

.. .. ..
∂2Q1

∂x2
∂2Q1

∂y2
−2Q1

H

.. .. ..

.. .. ..


2N×3

kxky
h

 =


−ρCpωQ1

..

..
ρCpωP1

..

..


2N×1

(4)

The unknown thermal conductivities, kx, ky, and the heat transfer coefficient183

h must then be extracted using a parameter fitting approach. In our previous184

work [7], a least squares fitting approach similar to that of Christov et al. [15]185

was used. This least squares fitting approach serves as a benchmark for com-186

parison to the new PINNs-based approach in this work, and is therefore briefly187

summarized here.188

In the least squares fitting technique, the second-order spatial partial deriva-189

tives of P and Q are calculated numerically at the spatial locations of each data190

point. Because experimental measurements involve the use of IR imaging, noise191

in the data has the potential to impact the extracted properties. The conver-192

sion of the data to the frequency domain using Fourier transforms eliminates193

much of the noise in the time series. However, when the second-order partial194

derivatives are calculated numerically, the effects of spatial noise is amplified.195

This is exacerbated for measurements with high spatial resolution, where the196

pixel-to-pixel distance is small, and for highly conductive materials, where the197

overall temperature rise for a given heat input is low. To reduce the effects of198

spatial noise, the spatial maps of the real and imaginary parts of the complex199

amplitude, P and Q, are smoothed by applying a square-shaped spatial convo-200

lution filter (filter2 in MATLAB), typically with a kernel size ranging from201

5×5 to 11×11 pixels.202

3. Methods203

3.1. Numerical Data Generation204

In practice, the transient temperature data to be used for inverse extraction205

of the thermal properties would be collected from an experiment. Herein, for206

purposes of assessing the newly developed fitting techniques, we instead gen-207

erate transient temperature data from a numerically simulated experiment in208

COMSOLTM Multiphysics. The simulated experiment is a numerical model209

7

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
06

24
7



that replicates the experimental system, consisting of a model geometry of the210

heat sink, specimen, and other associated boundary conditions. These simu-211

lated experiments have been extensively described and validated in the authors’212

previous work [7]. Using numerical experiments allows us to assess the inverse213

fitting methods against ground truth data, which can be generated for any hy-214

pothetical material properties and with varying levels of added signal noise.215

The simulated experiment setup is shown in Figure 2. A periodically varying216

temperature boundary condition is applied at the central ∼ 3 mm diameter of217

the specimen, in the form of T (t) = T∞+Tamp,max(1+ sin(2πft)), where T∞ is218

the ambient temperature, Tamp,max is the maximum amplitude of oscillations,219

f is the periodic heating frequency, and t is time. The heat sink is assigned a220

fixed temperature boundary condition, Tsink.221

Figure 2: Simulation domain for numerical generation of data used to assess the inverse
fitting approaches. The top view shows the specimen seated on the heat sink, and the cross-
sectional view calls out the applied boundary conditions including the periodic temperature
boundary condition applied at the location of the absorber disk, convective heat loss assigned
to both exposed surfaces of the specimen, and the fixed heat sink temperature.

In the simulated experiment, the properties of the hypothetical material are222

assumed to be known, and include the thermal conductivity (kx, ky, kz), den-223

sity (ρ), and specific heat (Cp). The simulation generates the transient thermal224

response of the material, and the recorded output is the transient surface tem-225
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perature map, Tsim(x, y, t). These data are then used for extracting the thermal226

conductivity of the specimen, using either the least square fitting approach de-227

scribed in Section 2 (also described and validated in [7]) or the PINNs-based228

approach to be described in Section (3.3), without assuming any prior knowledge229

of the input kx and ky that were used to generate the temperature response.230

3.2. Noise Addition to the Data231

This work aims to assess the advantage of PINNs-based analysis under ex-232

perimental conditions for which the measured temperature data is subject to233

high level of noise. The data generated from the numerical simulations is noise-234

free. Therefore, noise is explicitly added to this synthetic data. Two types of235

noise are considered:236

1. Noise addition in the time domain: White Gaussian noise is introduced237

to the transient temperature data (T ) in the time domain (before taking238

Fourier transform). This case of noise addition simulates the impact of239

inherent noise in the infrared detector response over time.240

2. Noise addition in the frequency domain: White Gaussian noise is added241

to the spatial maps of the complex amplitude components (P and Q) of242

the temperature signal after taking the Fourier transform. This case of243

noise addition simulates the impact of spatial variations in the emissivity244

of sample or pixel-to-pixel variations in the detector response.245

The addition of Gaussian noise to the matrices is performed in MATLAB246

using the awgn function. The level of noise is quantified via the signal-to-noise247

ratio (SNR), with noise increasing as the SNR decreases. Noise is incorporated248

at SNR values of 1, 5, 10, 20, 30, 40, and 50, where SNR = 50 is the lowest249

noise level while SNR = 1 is the highest noise level considered in this study.250

3.3. PINNs Approach for Inverse Parameter Fitting251

The overall objective of using the PINNs framework for inverse parame-252

ter fitting is to minimize the loss function (L) which takes into account both253

the training errors from neural network and the underlying physics governing254

equations. Figure 3 shows the fully connected feed-forward neural network ar-255

chitecture that is employed. The network comprises an input layer with two256

neurons representing input variables, the x and y spatial coordinates, and an257

output layer with two neurons corresponding to P and Q. The outputs are258

then used to compute the residuals of the physics PDEs (Equations 3a and 3b)259

using automatic differentiation and solve the inverse problem of predicting kx,260

ky, and h. The model is implemented in DeepXDE, a Python library [16] and261

Google Colaboratory2 services are used to execute the code for training the262

PINNs model and extracting the inverse parameters.263

The process of choosing model hyperparameters, such as depth (number of264

hidden layers), width (number of neurons in each hidden layer), learning rate,265

2https://colab.google/
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and loss weights, was informed by a preliminary set of training experiments.266

These initial trials involved systematically testing various hyperparameters one267

by one using numerically generated data with known inverse parameters (kx, ky,268

and h) described in Section 3.1. The primary goal of these training experiments269

was to identify the optimal value for each hyperparameter under consideration270

(while keeping the others fixed) that resulted in the most accurate inverse pa-271

rameter predictions and minimized the time needed for convergence to those272

values. Our approach involved optimizing each hyperparameter sequentially,273

using the optimized values from one set of experiments for the next set aimed274

at optimizing another hyperparameter.275

Figure 3: Overview of the physics-informed neural networks (PINNs) architecture. Input
spatial coordinates x and y are fed into the neural network, which produces corresponding
outputs of the real and imaginary parts of the complex temperature amplitudes (P and Q).
During each iteration, the neural network computes the derivatives using automatic differen-
tiation, while also incorporating physics-based regularization. After each iteration, the loss
function (L) is updated to include weighted losses from both the neural network and the
physics partial differential equation (PDE) residuals. Training of the neural network contin-
ues until the loss function falls below a specified tolerance level (error bound) and stops once
the tolerance is achieved.

After hyperparameter tuning, the final neural network architecture has a276

depth of 16 layers with each layer having a width of 20 neurons. The hidden277

layers use a tanh activation functions and Glorot Normal initializer. The net-278

work is trained using the Adam optimization algorithm with a batch size of279

512. The activation function, the initializer, and the optimization algorithm280

have been chosen based on the typical approach employed in the literature for281

similar problems. The initial learning rate is set as 10−3 and is then scheduled282

to decrease as the training progresses using an inverse decay algorithm with a283
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decay rate of 0.2 every 1000 iterations.284

In this work, the loss function consists of four terms; two originate from285

the neural network training losses for P and Q (LP,data and LQ,data), and two286

additional terms are introduced as physics-based regularizations (LPDE,1 and287

LPDE,2), yielding the loss function:288

L = w1LP,data + w2LQ,data + w3LPDE,1 + w4LPDE,2 (5)

The neural network losses (LP,data and LQ,data)) are the traditional mean-289

squared errors obtained after training the neural network for P and Q.290

LP,data =
1

N

N∑
i=1

|Pexperimental(xi, yi)− P (xi, yi)|2 (6)

291

LQ,data =
1

N

N∑
i=1

|Qexperimental(xi, yi)−Q(xi, yi)|2 (7)

The physics-based terms (LPDE,1 and LPDE,2) are obtained from the residu-292

als of the system of partial differential equations (PDEs) relevant to the physical293

problem in this study.294

LPDE,1 =
1

N

N∑
i=1

|kx
∂2P (xi, yi)

∂x2
+ky

∂2P (xi, yi)

∂y2
− 2hP (xi, yi)

H
+ρCpωQ(xi, yi)|2

(8)

LPDE,2 =
1

N

N∑
i=1

|kx
∂2Q(xi, yi)

∂x2
+ky

∂2Q(xi, yi)

∂y2
−2hQ(xi, yi)

H
−ρCpωP (xi, yi)|2,

(9)
In Equations 6 - 9, N is the number of training data points (or the collocation295

points) obtained from the numerical simulations. This number is typically in296

the range of 5,000 to 10,000 data points. Each term of the loss function has an297

associated weight (w1, w2, w3 and w4). Based on the hyperparameter tuning298

trials, these weights were assigned as 100, 100, 1, and 1, respectively. It is299

important for the loss terms to be balanced in the loss function. The volumetric300

heat capacity ρCp is typically of the order of 106 J K−1 m−3. We therefore301

normalize the input variables, x and y by dividing them by the absorber disk302

diameter (3 × 10−3 m). The training typically requires ∼50,000 - 200,000303

iterations before convergence of the fitted parameters is achieved.304

4. Results305

To first demonstrate the effect of noise on the dataset to be input into the in-306

verse parameter fitting algorithm, Figure 4 shows the magnitude of the complex307

amplitude (P 2 +Q2) and phase delay (tan−1(Q/P )) of the temperature signal308
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Figure 4: Amplitude and phase delay for temperature signals observed for an arbitrary
isotropic material (with thermal conductivity of kx = ky = 10 W m−1 K−1 , density of ρ =
1,500 kg/m3, specific heat capacity of Cp = 1,000 J/(kg K), and thickness of 100 µm, for a
heating frequency of 10 mHz with added noise corresponding to SNR = 1 compared to the
ideal noise-free case. Column (a) shows the impact of adding noise in the time domain to
the transient temperature profile (T ). The Fourier transform used to extract the amplitude
and phase reduces the impact of the noise on the output amplitude and phase parameters.
Column (b) shows the impact of adding noise directly in the frequency-domain to complex
amplitude components (P and Q). Here, the impact of the noise is significant at the SNR =
1 level, particularly in the phase data.

for an isotropic material of kx = ky = 10 W m−1 K−1. A clean signal (no noise;309

solid red line) is plotted in comparison to several different noise-added signals.310

When noise (SNR = 1) is added to temperature data in the time domain, it311

is filtered to some extent by Fourier transform, which depends on the number312

of time-periodic cycles used. As shown in Figure 4 (a), the amplitude remains313

relatively unaffected by the time-domain added noise. However, noticeable de-314

viation from the clean signal is apparent in the noisy data for the phase delay315

signal. The deviations are higher when using a lesser number of 5 measurement316

cycles (solid green circles), and increase at distances moving away from the cen-317

ter. The effect of the added noise diminishes with an increase in the number of318

100 measurement cycles (solid blue circles), with these data nearly overlapping319

the clean signal. Similarly, when noise (SNR = 1) is added directly to P and Q320
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(solid black circles), a significant difference in phase delay is observed in Figure321

4 (b). The amplitude in this case is also more affected by the noise compared322

to the case where the noise is added to the time domain. The difference is also323

apparent in the 2D maps of amplitude and phase delay as shown in Figure 1 c)324

and e) respectively.325

The performance of the least squares approach (without using any spatial326

convolution filter to smooth the data) versus the PINNs approach for inverse327

fitting of the thermal conductivity is assessed under varying degrees of noise.328

Figures 5 and 6 show this comparison for noise added in time domain for two329

isotropic samples (Figure 5 (a) kx = ky = 0.28 and (b) 10 W m−1 K−1) and330

one anisotropic sample (Figure 6 (a) kx = 2 W m−1 K−1, (b) ky = 10 W331

m−1 K−1). Notably, the PINNs approach (black solid stars) use data with332

just 5 time-periodic cycles and yields a very accurate prediction of thermal333

conductivity values for both isotropic and anisotropic samples across all noise334

levels, with errors in estimation remaining below 1 %. In contrast, the least335

squares fitting method (solid light blue, red, or green circles) yields higher error336

and is sensitive to the number of cycles used. When fitting to data with the337

same number of 5 cycles as the PINNs approach, the least squares method338

performs very poorly, with > ∼ 85 % estimation error for SNR < ∼10. In339

general, using the least squares approach, it is observed that the noise added340

in the time domain impacts the thermal conductivity estimations significantly341

when SNR < 30, and is therefore very sensitive to even small amounts of noise.342

This fitting method encounters challenges due to discretization errors stemming343

from utilizing numerical differentiation to compute second-order derivatives. In344

contrast, the PINNs approach capitalizes on automatic differentiation, enabling345

the evaluation of derivatives via chain rule (back-propagation) while training346

the neural network, making this inverse fitting method robust even under high347

signal noise (up to SNR = 1 in this study).348

The poor performance of the least squares fitting method when noise is added349

to the time domain data can be partially mitigated by increasing the number350

of temperature measurement cycles used in the analysis. The Fourier transform351

filters time-domain noise more effectively as the number of cycles increases. For352

instance, at SNR = 10, the estimation error is reduced from ∼ 83 % at 5 cycles353

to ∼ 17.5 % for 100 cycles. However, the approach is nevertheless susceptible to354

high noise levels and the least squares fitting approach results in an estimation355

error of ∼ 50 - 70 % in the worst-case scenario (SNR = 1). This demonstrates356

a two-fold advantage of PINNs over the least squares fitting approach: first,357

PINNs enables accurate extraction of the thermal conductivity from measure-358

ment data having very high levels of noise that would not otherwise be possible;359

second, even in cases of low or moderate noise the PINNs fitting approach of-360

fers a reduction in the number of cycles that must be measured to achieve an361

accurate inverse parameter extraction, thereby reducing the measurement time.362

363

When introducing different levels of noise directly to P and Q in the fre-364

quency domain, the extracted thermal conductivity for the different fitting ap-365

proaches are plotted in Figure 7 for an isotropic thermal conductivity of kx = ky366
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Figure 5: : Extracted thermal conductivity as a function of the signal-to-noise (SNR) ratio
for noise added to the time-domain signal for a sample with an isotropic thermal conductivity
of (a) kx = ky = 0.28 W/(m K), density of ρ = 2,200 kg/m3, specific heat capacity of Cp

= 970 J/(kg K), and thickness of 500 µm, at a heating frequency of 10 mHz and (b) kx
= ky = 10 W/(m K), density of ρ = 2,200 kg m−3, specific heat capacity of Cp = 740
J/(kg K), and thickness of 500 µm, at a heating frequency of 500 mHz, including convection
losses (h = 10 W/(m2 K)). The PINNs approach (black stars) leads to accurate estimations
of thermal conductivity across all tested noise levels, even when only 5 oscillation cycles are
included in the analysis to calculate the Fourier transform. The estimation accuracy of the
least squares fitting approach (solid blue circles with increasing number of cycles represented
by darker shades) suffers from added noise, as illustrated by the large error at low SNR. This
can be partially mitigated by increasing the duration of the measurement and analyzing more
oscillation cycles (up to 100 cycles in this work improves accuracy, but is not sufficient to
achieve similar accuracy to the PINNs fitting approach).

= 0.28 W/(m K). It is evident that the least squares fitting approach (solid blue367

circles) generally fails to accurately extract the thermal conductivity when SNR368

< 50. Whereas, the PINNs approach (hollow black stars) effectively fits the data369

for SNR > 20. Notably, PINNs predictions start to falter for SNR < 20. This370

limitation is attributed to higher loss weights (100,100) assigned to the neural371

network losses compared to those for residual-based losses (1,1). These unequal372

loss weights lead to data overfitting and consequently, the overfitting of noise.373

Adjusting the loss weights such that they are equal for both the neural network374

training losses and the PDE residual losses (1,1,1,1) helps in parameter fitting375

under extreme noise situations. Implementing these equal loss weights (solid376

grey stars), the PINNs approach is shown to accurately extract the thermal377

conductivity across all the noise levels. However, a drawback in using equal loss378
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Figure 6: Extracted thermal conductivity as a function of the signal-to-noise (SNR) ratio for
noise added to the time-domain signal for a sample with anisotropic thermal conductivities of
kx = 2 W/(m K) and ky = 10 W/(m K), density of ρ = 1,970 kg/m3, specific heat capacity
of Cp = 970 J/(kg K), and thickness of 500 µm, at a heating frequency of 25 mHz, with no
convection losses. The PINNs fitting approach (black stars) leads to accurate estimations of
thermal conductivity across all tested noise levels while analyzing only 5 oscillation cycles to
calculate the Fourier transform. The estimation accuracy of the least squares fitting approach
(solid red and green circles with increasing number of cycles represented by darker shades)
suffers from added noise, as illustrated by the large error at low SNR. This can be partially
mitigated by increasing the duration of the measurement and analyzing more oscillation cycles
(up to 100 cycles in this work improves accuracy, but is not sufficient to achieve similar
accuracy to the PINNs fitting approach).

weights is that the PINNs fitting approach requires more iterations to converge379

to the optimal values and hence higher computational time.380

Taking the PINNs approach with the original loss weights (100,100,1,1), we381

compare the fitting performance against the least squares fitting approach for382

materials spanning different thermal conductivity values (0.1, 1, and 10 W m−1
383

K−1) and anisotropy ratios (1, 10, and 100). The frequency and thickness of384

the specimen are fixed at 100 mHz and 100 µm, respectively. For comparison,385

the fitting performance is evaluated for both clean data and noisy data (SNR386

= 10, added to the frequency domain). The left panel in Figure 8 shows the387

thermal conductivity estimations by the two approaches when analyzing the388

data without noise. Both the methods work well and predict the thermal con-389

ductivity to within 5 % error (shaded green) in most cases. In the cases, where390

one or both of kx and ky are 0.1 W m−1 K−1, the estimation error increases391

to 35 % and 30 % for the least squares and PINNs approaches, respectively392
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PINNs  - Equal Weights

PINNs  - Unequal Weights
Least Squares Fit

Figure 7: Extracted thermal conductivity as a function of the signal-to-noise (SNR) ratio for
noise added to the frequency-domain data for a sample with an isotropic thermal conductivity
of kx = ky = 0.28 W/(m K), density of ρ = 2,200 kg/m3, specific heat capacity of Cp = 970
J/(kg K), and thickness of 794 µm at a heating frequency of 10 mHz, assuming no convection
losses. The PINNs model using unequal weights (black stars) assigned to neural network
losses and residual-based losses has reducing fitting accuracy when SNR < ∼10. The fitting
can be improved by changing the loss weights; the PINNs approach with equal weights (grey
stars) leads to accurate estimations of thermal conductivity across all tested noise levels.
In comparison, the least-squares fitting approach performs poorly up to high signal-to-noise
ratios (SNR < ∼40).

(corresponding to the yellow shading). This discrepancy is not associated with393

the fitting approach, but rather a physical limitation of the measurement under394

these conditions. Namely, this is attributed to the frequency of laser heating395

and sample thickness, which in this scenario, there is an insufficiently small396

thermal penetration depth for the lowest thermal conductivity to satisfy the397

assumption of 2D in-plane heat spreading in the specimen. As described in [7],398

the measurement heating frequency needs to be appropriately selected based on399

the extracted property measurement to ensure this penetration depth condition400

is satisfied.401

The difference in the performance of the two fitting approaches is apparent402

when significant noise is added to data, shown for SNR = 10 in the right panel403

in Figure 8. The least squares fitting approach has extreme > 90 % estimation404

errors (shaded red). In contrast, the PINNs approach fits the noisy data well405

and predicts the thermal properties with low errors similar to the the clean406

data, excluding the cases of low thermal conductivity for the reasons already407

described. Overall, the PINNs method performs much better compared to the408
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0.069 0.065 0.103 0.000 0.000 0.000
0.067 0.969 9.625 0.000 0.027 0.198

0.969 0.986 0.997 0.027 0.016 0.000
0.065 0.984 9.912 0.000 0.018 0.195

9.625 9.912 9.944 0.198 0.195 0.111
0.103 0.997 9.943 0.000 0.000 0.104

0.121 0.111 0.115 0.118 0.111 0.112
0.128 0.990 9.899 0.130 0.995 9.937

0.990 1.000 1.001 0.995 1.019 0.997
0.111 1.000 9.675 0.111 0.991 9.952

9.899 9.675 9.948 9.937 9.952 9.964
0.115 1.001 9.942 0.112 0.997 9.972
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Figure 8: Estimated thermal conductivity values for data without noise (clean signal; left
panel) and with noise added to data in the frequency domain (SNR = 10; right panel), covering
different anisotropy ratios (1,10,100) and including convection losses (h = 10 W/(m2 K)). The
specimens have density of ρ = 1,500 kg/m3, specific heat capacity of Cp = 1,000 J/(kg K),
and a thickness of 100 µm. The heating frequency is 100 mHz. The top panels show the
extracted thermal conductivities using the least squares fitting approach versus the bottom
panels using the PINNs fitting approach. Each cell shows the extracted values of inverse
parameters, with the upper diagonal representing kx and the lower diagonal representing ky .
For a clean signal, both fitting techniques estimate the inverse parameters with < 5 % error
(shaded green) in most cases. The estimation error is higher (shaded yellow) for low thermal
conductivity cases regardless of the fitting technique due to violation of assumptions made in
the governing physics due to the high heating frequency. For noisy data, the PINNs approach
performs similar to that of clean data, while the least squares fitting method performs poorly
with more than 90 % error in all the cases (shaded red).

least squared fitting method in the case of noisy data.409

Although the PINNs approach exhibits superior performance, it is not with-410

out limitations. Similar to many optimization routines, it was observed that411

the efficiency of the PINNs approach depends on the initial guess values of the412

parameters being predicted; if these values deviate significantly from the ground413

truth values, it may require a large number of iterations, and consequently sub-414

stantial computational time, for the inverse predictions to converge to specific415

values. This challenge is particularly evident in scenarios with high thermal416

conductivity (above 100 W m−1 K−1).417
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5. Conclusion418

The 2D laser-based Ångstrom method relies on inverse parameter fitting419

routines to extract the unknown thermal properties from spatiotemporal mea-420

surement data. A least squares fitting approach used in our previous work that421

developed this measurement technique relies on numerical differentiation to ob-422

tain second-order derivatives required for fitting to the governing heat diffusion423

equation. This approach is therefore susceptible to discretization errors, espe-424

cially in the case of noisy data. In this work, we introduce an alternative inverse425

parameter fitting approach using physics-informed neural networks (PINNs).426

The robustness of the PINNs approach to recover the correct thermal prop-427

erties is assessed through the introduction of time-domain or frequency-domain428

noise into numerically generated data. The PINNs approach is robust down to429

very low signal-to-noise ratios (SNR = 1) with time-domain noise, with errors430

less than 1 %. This greatly surpasses the performance of the least squares fitting431

method, which fails to predict the thermal properties when the signal-to-noise432

ratio falls below 30. Furthermore, this robustness of the PINNs approach is433

achieved by processing data using only 5 time-periodic measurement cycles ver-434

sus the lower accuracy using 100 cycles for the least squares fitting approach.435

This comparative performance of the inverse fitting approaches holds true for436

diverse specimen types encompassing both isotropic (low and high thermal con-437

ductivity) and anisotropic materials.438

However, when noise is directly introduced in the frequency domain, dis-439

cernible limits on the levels of noise tolerable by the PINNs approach are ob-440

served, while the least squares fitting method proves inadequate across all noise441

levels. The PINNs method begins to have compromised prediction accuracy442

for SNR = 10 and below. This is attributed to the selected model architec-443

ture hyperparameters, namely, overfitting of the noise due to the unbalanced444

loss weights that give priority to fitting of the neural network outputs versus445

the physical governing equations. Selection of these parameters is a known446

challenge of such machine learning methods, and we therefore demonstrate the447

potential for improving the fitting accuracy by equalizing these loss weights un-448

der extreme-noise situations. This work highlights the potential of PINNs for449

extending the capability of this technique for characterizing a broader range of450

materials with higher accuracy owing to robustness in the inverse parameter451

fitting under practical levels of measurement noise.452
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