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Our mission is to better understand how soft materials and complex fluids
deform and flow in response to externally applied forces. We achieve this
through experimental study of model materials with well-defined chemical and
physical structures and through rheometry coupled with in-situ flow visualization.
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Polymeric Materials
for High-Performance Concrete

Water released from hydrogel
particles used as internal curing
agents leads to beneficial reductions
in volumetric shrinkage and cracking
of concrete.

Rheo-Physical Instruments 
To Visualize Flow Fields

Custom-built flow visualization equipment allows for
rheometry data to be collected and directly correlated with a
sample’s macroscale deformation response.

 Particle tracking velocimetry (for transparent samples), used to
detect shear banding and fracture in self-assembled polymer gels.

 Ultrasonic speckle velocimetry (for opaque samples), used to
detect wall slip in model cement pastes.

Hydrogel particle chemistry,
shape, and size are controlled
through different synthesis
methods. Swelling behavior is
strongly dependent on
hydrogel chemistry (AA:AM).

Addition of hydrogel particles significantly reduces
mortar shrinkage, even at low water-to-cement (w/c)
ratios:

Despite voids remaining from deswollen hydrogels,
mortar strength increased at 28 days, implying more
complete curing and less microcracking from shrinkage:

The hydrogel chemistry
directly impacts the
formation of inorganic
phases in the cement
microstructure.

Majority-acrylamide hydrogel
particles result in void space
that is partially refilled with
calcium hydroxide (CH) and
calcium-silicate-hydrate phases.
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Strain

Constant shear data collected during rheometry

Decrease in stress response

indicates likely fracture in gel

Fractured Gel
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confirm fracture with tracking
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Grey scale
speckle image
from sample:

USV particle velocity profiles for MgO suspensions with PAA-PEO
for 0% (a), 20% (b), and 50% PEG by weight of PAA-PEO (c). r = 0
indicates the moving wall surface of the Taylor-Couette fixture and
r = 2 mm indicates the stationary surface of the outer cylindrical
cup of the fixture. The shear rate is 10 s-1 and the corresponding
velocity of the rotating cylinder is 20 mm/s.
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Dynamics of Surfactant-Stabilized
Oil-in-Water Emulsions

Oil-in-water emulsions stabilized by surfactant molecules can 
be used to encapsulate bioactive compounds.

Characteristics which govern emulsion stability
(including droplet size distribution, phase
separation resistance, and interfacial elasticity) can
be quantified using several techniques:

Oil-in-water
Emulsion

Optical Microscopy
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Aging/Coarsening Studies 
With Dynamic Light Scattering

10
-5

10
-4

10
-3

0

10

20

30

40

50

S
e
p
a
ra

te
d
 P

h
a
s
e
 (

%
)

Surfactant Concentration (mol/L)

 Water Separated

 Oil Released

(50-50) 
Oil-water
Emulsions

Improving
kinetic stability

Gravitational Separation Analysis

Pendant Drop Shape Tensiometry

Flow Behavior of Polymer and 
Surfactant Solutions

Shear rheometry measurements are used to quantify the flow
behavior of polymer solutions used for enhanced oil recovery.
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Polymer in pure water

ions reduce intra-chain repulsion due
to electrostatic screening, causing a
decrease in dimension (and viscosity)

calcium ions may
temporarily bind
charges together

Polymers make
aqueous solutions
more viscous.
Dissolved salts (ions)
in the water can
reduce this viscosity
increase. Calcium ions
reduce the viscosity
more than sodium
ions.
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