

MICHAEL J. HEIDEN Ph.D. CANDIDATE SCHOOL OF MATERIALS ENGINEERING

EDUCATION

Ph.D. Materials Engineering, Purdue University

Aug. 2012 - Present

Thesis: Designing hierarchical porous, biodegradable materials for orthopaedic fracture fixation implants Advisor: Dr. Lia Stanciu (GPA: 3.79)

NSF 2014 Fellowship in Materials Engineering

Curriculum Focus: Biocomposite implant development; tissue-material interactions; metal corrosion properties; metallurgical processing and deformation, development of porous materials

B.S. Material Science & Engineering, Washington State University

May 2012

Advisor: Dr. David Field (GPA: 3.52)

Minor in Mechanical Engineering

EXPERIENCE

Graduate Research Assistant with Dr. Lia Stanciu

Aug. 2012 - Present

Purdue University- School of Material Science Engineering

- Developed and tested cast and sintered Fe-Mn alloys for in vitro and in vivo corrosion experiments
- Applied a wide range of deformation processes (SPD) to Fe-Mn alloys to enhance degradation
- Generated hierarchical porous surfaces using dealloying to improve cell attachment
- Established an innovative design to create resorbable, porous Fe-Mn-Hydroxyapatite biocomposites
- Investigated methods to tailor the mechanical properties and degradation rates of Zn-Mg alloys
- **Preliminary Exam:** Critical Review on the "Development of metal-on-metal hip implant bearing surfaces to reduce wear debris"
- Mentored undergraduate research assistants towards data analysis suitable for journal publication

Technical Instructor for MSE 335: Material Characterization Techniques

Fall 2013 & Fall 2015

Purdue University- School of Material Science Engineering

- Led weekly recitation lectures and multiple lab sections per week
- Instructed students on the fundamentals of SEM and developed their hands-on laboratory skills

Technical Assistant for Undergraduate Research with Dr. David Field

Jan. 2010-May 2012

Washington State University- School of Mechanical & Material Science Engineering

- Designed an equal-channel angle extrusion (ECAE) die capable of SPD of Mg alloys
- Characterized the refinement of grains and texture development of severe plastically deformed alloys

Senior Design Project: Transport for Nonproliferation Radiation Detection Equipment

Aug. 2011

Pacific Northwest National Lab

Designed and built a mobile cart for nuclear radiation detector transport to measure the concentration of U235 in UF6 containers; safeguarding the nonproliferation of nuclear material

Aerospace Quality Engineering Intern

Summers of 2010, 2011, 2012

Exotic Metals Forming Company LLC

Evaluated diverse sets of cobalt and titanium alloy parts while designing quality plans for hardware employed in various aerospace applications

RELATED EXPERIENCE

- Proficient in metal casting, deformation, machining, sintering, surface treatments, & ceramic processing
- Trained in cell culture, corrosion testing, fluorescence microscopy, & MTS Assay
- Trained in tensile & compression tests, SEM (EDS, EBSD, and BSE); AFM, XRD, & nanoindentation

701 West Stadium Avenue West Lafayette, IN 47907-2044 mheiden@purdue.edu Phone: (206) 550-6262

MICHAEL J. HEIDEN PH.D. CANDIDATE SCHOOL OF MATERIALS ENGINEERING

PEER REVIEWED JOURNAL PUBLICATIONS

- (In press) **Heiden, M**. Johnson, D. Stanciu, L. Enhancement of bone marrow stromal cell attachment and degradation rate for nanoporous, dealloyed, bioresorbable Fe-Mn and Fe-Mn-Zn alloys. *Acta Biomaterialia*.
- (In press) **Heiden, M**. Johnson, D. Stanciu, L. Surface modifications through dealloying of Fe-Mn and Fe-Mn-Zn alloys developed to create tailorable, nanoporous, bioresorbable surfaces. *Acta Materialia*.
- Heiden M. Walker E. Stanciu L. Magnesium, Iron and Zinc Alloys, the Trifecta of Bioresorbable
 Orthopaedic and Vascular Implantation A Review. J Biotechnol Biomater, 5, (2015) doi:10.4172/2155 952X.1000178
- **Heiden, M**. Kustas, A. Chaput, K. Nauman, E. Johnson, D. Stanciu, L. Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron-manganese alloy implants. *J. Biomed. Mater. Res. A* 1–8, (2014) doi:10.1002/jbm.a.35220
- **Heiden, M.** Walker, E. Nauman, E. & Stanciu, L. Evolution of novel bioresorbable iron-manganese implant surfaces and their degradation behaviors in vitro. *J. Biomed. Mater. Res. A* 1–9, (2014) doi:10.1002/jbm.a.35155
- Young, J. Askari, H. Hovanski, Y. Heiden, M. & Field, D. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation. *Mater. Charact.* 101, 9–19 (2014) doi: 10.1016/j.matchar.2014.12.026

PROFESSIONAL DEVELOPMENT AND CONFERENCES

- **Heiden, M**. Kustas, A. Chaput, K. Johnson, D. Nauman, E. Stanciu L. *Bioresorbable Iron-manganese for Implantation: The Effect of Microstructure and Surface Morphology on Degradation Behavior*. **MS&T2014**, Pittsburgh, PA.
- **Heiden, M**. Huang, S. Nauman, E. Johnson, D. Stanciu L. *Development of Hierarchical Porosity in Resorbable, FeMn+HA Biocomposites Using Leaching and Dealloying Techniques.* **MS&T2015**, Columbus, OH.

DISCLOSURES AND PATENTS

• Nauman, E. Stanciu, L. **Heiden, M**. Dehestani, M. *Bioresorbable Porous Biocomposites for Orthopaedic Applications*; US Provisional Patent No. 62193776 filed July 17, 2015

ACTIVITIES AND AWARDS

- *National Science Foundation Graduate Research Fellowship* (2014-2017): Three year fellowship support used towards: Dealloying Bioresorbable Biomaterials to Produce Nanoporous Structures
- *MSE Outreach Instructor* (2013-present): Actively provide high school students with hands-on experiments in material science engineering to help broaden student knowledge of STEM field education
- **Research Mentor** (2012-2013): students for the "Summer Undergraduate Research Fellowships" (SURF) program to design and conduct experiments. Taught how to efficiently analyze data suitable for journal publication.
- *Member of Material Advantage (ACerS, AIST, ASM, TMS)* (*Member since 2009*): Worked to advance the knowledge of STEM fields across Washington state and built material kits to educate high-school students
- Ross Fellowship (2012): Awarded to high achieving graduate students in MSE at Purdue University
- Kaiser Scholarship (2009-2011): Awarded to high achieving undergraduate students in MSE at WSU
- *Presidential Scholarship of Excellence (2009):* Awarded to transfer students who have leadership potential
- *Tau Sigma Honor Society* (2009-2012): Achieved recognition and academic excellence for high achievement