Effect of Co-Doping on High Temperature Phase Stability of Plasma-Sprayed Yttria-Stabilized Zirconia

Zun Chen and Rodney Trice, Ph.D.
Purdue University

Matt Besser and Dan Sordelet, Ph.D.
Ames National Laboratory

April 21th, 2004

Purdue University
School of Materials Engineering

Supported by California Energy Grant
Thermal Barrier Coatings

• Used in gas-turbine engines as a protective layer for engine structures

• A 200 µm thick ceramic topcoat can lower the surface temperature by more than 200°C → engine efficiency increases by ~ 6 – 12%²

• Typical topcoat material: zirconia-based ceramics:
 ➢ Low thermal conductivity
 ➢ Similar thermal expansion coefficient

Introduction

Plasma Spraying of Ceramic Topcoat

7.6 mol. % YO$_{1.5}$-ZrO$_2$ (7.6YSZ) powders

- Injected into the plasma

Accelerated and melted in hot plasma

- Powder velocity --- 100 to 550 m/s1
- Powder temperature --- above T_{melt} of YSZ (2680$^\circ$C)
- Coatings with lamellar structure
- Rapid solidification \rightarrow metastable tetragonal phase

Metastable Phase in Plasma-Sprayed YSZ

- Redistribution of yttria prohibited ➔ t’-ZrO₂ with 7.6 mol% YO₁.₅, instead of equilibrium phases

- Desirable for TBCs
 - Low thermal conductivity
 - Non-transformable to monoclinic phase
Stability of t’-ZrO₂ Phase

Partitioning of t’-ZrO₂ at high service temperature

- t’-ZrO₂ (7.6 mol. % YO₁.₅)
- Partition at Elevated Temp
 - t’-ZrO₂ → c-ZrO₂ (15 mol.% YO₁.₅)
 - t’-ZrO₂ → t-ZrO₂ (4 mol.% YO₁.₅)
 - t’-ZrO₂ → m-ZrO₂

- Detrimental to cyclic life (volume change associated with t→m transformation)
- Stabilize t’-ZrO₂
 Co-doping with secondary cations
Starting Powder and Co-Dopants Studied

- Spray-dried 7.6 mol. % YO$_{1.5}$-ZrO$_2$ (7.6YSZ) powder

- Co-dopant: cations with large ionic radius (Ca$^{2+}$ and Yb$^{3+}$)

<table>
<thead>
<tr>
<th>Ion Type</th>
<th>Zr$^{4+}$</th>
<th>Yb$^{3+}$</th>
<th>Y$^{3+}$</th>
<th>Ca$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (nm)</td>
<td>0.084</td>
<td>0.99</td>
<td>0.102</td>
<td>0.112</td>
</tr>
</tbody>
</table>
Infiltration of Co-Dopants into Spray-Dried Powders

- Dissolve hydrous Ca(NO$_3$)$_2$ or Yb(NO$_3$)$_3$ in ethanol
- Vacuum infiltrate powders with co-dopant solution
- Dry at 110°C
- Calcine at 1100°C
- Plasma-spray to form coatings

<table>
<thead>
<tr>
<th>Powder</th>
<th>Salts</th>
<th>Dopant Conc. *</th>
<th>Designated Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6YSZ</td>
<td>Ca(NO$_3$)$_2$ • 4H$_2$O</td>
<td>2% Ca</td>
<td>2Ca/7.6YSZ</td>
</tr>
<tr>
<td>7.6YSZ</td>
<td>Ca(NO$_3$)$_2$ • 4H$_2$O</td>
<td>5% Ca</td>
<td>5Ca/7.6YSZ</td>
</tr>
<tr>
<td>7.6YSZ</td>
<td>Yb(NO$_3$)$_3$ • 5H$_2$O</td>
<td>2% Yb</td>
<td>2Yb/7.6YSZ</td>
</tr>
</tbody>
</table>

* Based on % substitution of total cation sites
Heat-Treatment of Coatings

- Coatings heat-treated at 1200°C for 10hrs or 100hrs
- Heating rate 10°C/min

X-Ray Diffraction Analysis

- Coatings crushed for analysis
- Cu-Kα radiation
- $2\theta = 72-76^\circ \rightarrow$ differentiate c-ZrO$_2$ and t'-ZrO$_2$
- XRD data were deconvoluted using TOPAS

Chemical Analysis of Plasma-Sprayed Coatings

• Co-dopants were successfully incorporated into coatings

<table>
<thead>
<tr>
<th>Coating</th>
<th>Element Tested</th>
<th>Expected Secondary Dopant Conc. (mol%)</th>
<th>Tested Secondary Dopant Conc. (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6YSZ</td>
<td>Ca</td>
<td><0.44</td>
<td>0.24</td>
</tr>
<tr>
<td>2Ca/7.6YSZ</td>
<td>Ca</td>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>5Ca/7.6YSZ</td>
<td>Ca</td>
<td>5</td>
<td>4.1</td>
</tr>
<tr>
<td>2Yb/7.6YSZ</td>
<td>Yb</td>
<td>2</td>
<td>2.69</td>
</tr>
</tbody>
</table>

• Tested by NSL using mass spectroscopy
• Based on % substitution of total cation sites
Phase Evolution of 7.6YSZ Baseline

- As-sprayed coating exhibits a single t’-ZrO$_2$ phase
- Shift of (004)t’ peak after 10 hrs at 1200°C (indicating increase in lattice parameter c in tetragonal structure)
- Limited partitioning observed after 100 hrs at 1200°C
Phase Evolution of 2Ca/7.6YSZ

- As-sprayed coating exhibits a single t’-ZrO$_2$ phase
- Angular separation between (004)t’ and (400)t’ peaks increase after 10 hrs at 1200°C
- Limited partitioning observed after 100 hrs at 1200°C
Phase Evolution of 5Ca/7.6YSZ

- As-sprayed coating exhibits a single c-ZrO$_2$ phase
- Partitioning of c-ZrO$_2$ after 10 hrs at 1200°C
- Partitioning continues after 100 hrs at 1200°C
Phase Evolution of 2Yb/7.6YSZ

Results

- As-sprayed coating exhibits a single t’-ZrO₂ phase
- Angular separation between (004)t and (400)t’ peaks increases after 10 hrs at 1200°C
- Angular separation between (004)t and (400)t’ peaks continues to increase after 100 hrs at 1200°C, no c-ZrO₂ phase observed
Phase Stability of Coatings with Different Compositions

Results

- 100-hr heat-treated at 1200°C
- 2 mol. % Ca\(^{2+}\) had little effect in stabilizing t’-ZrO\(_2\) phase
- 5 mol. % Ca\(^{2+}\) destabilized 7.6YSZ
- 2 mol. % Yb\(^{3+}\) co-doping slowed down partitioning of t’-ZrO\(_2\)
Results

Tetragonality Evolution with Heat-Treatment Time

- After 10-hr heat-treatment at 1200°C
 - tetragonality of coatings increased due to the relaxation of lattice distortion
- After 100-hr heat-treatment
 - tetragonality of 2Yb/7.6YSZ continued to increase
 - tetragonality of 7.6YSZ and 2Ca/7.6YSZ close to that of as-sprayed 7.6YSZ
Equilibrium Phase Constituent of 2Yb/7.6YSZ

- 2Yb/7.6YSZ falls within t+c two phase field
- t'-ZrO₂ not thermodynamically favored over t+c

Yb₂O₃-Y₂O₃-ZrO₂ ternary phase diagram (1200°C)¹

Partitioning Kinetics

- Kinetics of the partitioning of $2\text{Yb}/7.6\text{YSZ}$ slower than 7.6YSZ and $2\text{Ca}/7.6\text{YSZ}$

- $r\text{Zr}^4+ < r\text{Yb}^3+ < r\text{Y}^3+ < r\text{Ca}^2+$

- Ca^2+ (co-dopants with larger size) increases local distortion of the anion lattice
 \- promotes the nucleation of c-ZrO_2 phase1,2
 \- De-stabilizes t'-\text{ZrO}_2 phase
 \- Higher Ca^2+ concentration, less stable

- Yb^3+ co-doping accommodates lattice distortion
 \- Sluggish nucleation of c-ZrO_2 phase

1 - N. R. Rebollo, A. S. Ganhi and C. G. Levi, unpublished work
Summary

- Co-dopants were successfully incorporated to 7.6YSZ coatings via infiltration of co-dopant solutions to spray-dried powders.

- Co-doping of 5 mol% Ca$^{2+}$ destabilized 7.6YSZ. Co-doping of 2 mol% Ca$^{2+}$ did not change the stability of 7.6YSZ.

- Co-doping of 2 mol% Yb$^{3+}$ stabilized t’-ZrO$_2$ in 7.6YSZ due to the sluggish partitioning kinetics.
CaO-Y$_2$O$_3$-ZrO$_2$ ternary phase diagram (1250°C)1
<table>
<thead>
<tr>
<th></th>
<th>7.6YSZ</th>
<th>2Ca/7.6YSZ</th>
<th>5Ca/7.6YSZ</th>
<th>2Yb/7.6YSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-sprayed</td>
<td>t’</td>
<td>t’</td>
<td>c</td>
<td>t’</td>
</tr>
<tr>
<td>10-hr @1200°C</td>
<td>t’</td>
<td>t’</td>
<td>c+t</td>
<td>t’</td>
</tr>
<tr>
<td>100-hr @1200°C</td>
<td>t+c</td>
<td>t+c</td>
<td>c+t</td>
<td>t’</td>
</tr>
<tr>
<td>c-ZrO₂ vol.%</td>
<td>4%</td>
<td>6%</td>
<td>36%</td>
<td>0</td>
</tr>
</tbody>
</table>
School of Materials Engineering
Thermal Barrier Coatings

Relative Intensity vs. 2θ for different compositions:
- 5Ca/7.6YSZ
- 2Ca/7.6YSZ
- 7.6YSZ

Peaks identified:
- (004)t
- (400)t
- (004)c
- (400)c
- (400)t'
- 2Yb/7.6YSZ
Parameter of plasma spraying

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (Amps)</td>
<td>900</td>
</tr>
<tr>
<td>Volts (@gun)</td>
<td>41.3</td>
</tr>
<tr>
<td>Arc gas (scfh)</td>
<td>54 (Ar)</td>
</tr>
<tr>
<td>Aux gas (scfh)</td>
<td>44 (He)</td>
</tr>
<tr>
<td>Carrier gas (scfh)</td>
<td>13 (Ar)</td>
</tr>
<tr>
<td>Powder feed rate (rpm)</td>
<td>1.5</td>
</tr>
<tr>
<td>Stand off distance (cm)</td>
<td>10.0</td>
</tr>
</tbody>
</table>

* scfh = standard cubic feet per hour