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These expressions become too complicated to express unless we define them in terms of
strains. To express displacements in strain, we assume that the displecements are small.
Otherwise, the specific dimensions that are lost in converting to strains will be necessary for

areasonable description of the shape change. The four parameters that separately describe
the types of shape changes in Rig. 1.2 are the strains
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~ H limits are taken, these strains can be répresented by a single term describing multiaxial
strain at a point as

du;
e =— (1.3)
i dxj
or
dui = eijdxj

Thie subscript { represents the direction of displacement, and j is related to the direction of
. the original length that was distorted by the deformation. The total displacements can be
written in terms of the original position and these strains by

U=ex + €17¥
V=eyx+eny

We can then separate the components of the strain. The strains ey, and e,; are the ten-
sile or compressive strains in the respective x- and y-directions. The shear strains represent
distortions that include a combined shape change and rotation. The shear strains can be rep-

resented as angles of rotation by the tangent of the angular change. For small angular
changes, '

tanct"Au“e o
Ay (1.4)
Av

tnp = - =ey =B

where o and B are expressed in radians. Unfortunately, the tensor ¢;; measures not only dis-

tortions and rotations resulting from deformation, but also rotations that take place without
- ‘any deformation. The values can be defined as a matrix or tensor
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We can separate this tensor ¢ into

eij = eij + mij
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HG. 1.5 (3} A normal tensilo-stress and {b) a state of shear stress {without the equal and

" opposite foree couple required to prevent rotational a:jﬁezieraﬁon).
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where A is the instantaneous o& The true stiess can also be given in terms of a limit for

assumption of constant volume can be made so that

where A, is the initial area, J; is the initial Iength, Ais the final area, and Jris the final length.

The true stress can then be defined in terms of the engineering stress and engineering strain
as .

e = ng(l-!-eeng)

1.2.2 WMultiaxial Stresses
A shear stress is easily represented by a pair of force couples, of the type shown in Fig,
1.5b. If all forces are equal, there should be no net acceleration. The shear stress is defined

by a force applied within the planar faces of area A.
The shear stress is.

F .
= 1.10
= (1.10)

where F is a force couple applied across A (remember that an additional couple with an

opposite sense is required to prevent rotational acceleration).

Most mechanical testing strategies are designed to make the relation between applied
stress and the resulting strains as simple as possible. Few load-bearing components undergo
only simple uniaxial stresses. Often the stress state is at least biaxial and varies with posi-
tion in the part. For a defined, infinitesimal location within a component, the stress state can
be defined using the two-dimensional or plane stress element shown in Fig. 1.6. Although
most stress states are three-dimensional, many of the examples examined in elementary
mechanics are given in terms of plane stress for simplicity. Stress states, including shear in
three dimensions, can be expressed using nine ferms just as we have seen for strain. Fortu-
nately, we will demonstrate in Chapter 2 that even the most complex stress states can be

simplified to three normal tensile or compressive siresses if the proper orientation frame is
chosen. -
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brittle ceramics, glasses, and polymers. Additionally, the added expense of making tensile

specimens, as well as gripping problems, often result-in the use of bending as 2 mode for
mechanical testing.

Three- and Four-Point Bending Two bending geometries are common for low-
temperature and high-temperature strength and fracture toughness measurements. Three-
and four-point loading geometries are shown in Fig. 1.10. In strength tests, the maximum
tensile stress in the bend specimen at failure is often termed the modulus of rupture. For
elastic loading, the expressions for the maximum stress are given as

o P
mx gl (1.12)
for three-point bending and
- _Ph \
max = 4I {1.13)

for four-point bending. In both equations, P is the applied force, I is the spacing between the
two outer loading points in three-point bending, k is the specimen height, and 1 is the
moment of inertia. In four-point bending, the M!oading points are designated by 1. The
momment of inertia for bend specimens with uniform rectangular cross sections is given by

(YR

12 (L14)
where w is the sample width. The stress varies linearly across the specimen height for spec-

Jimens with rectangular cross sections. For acircular cri‘i section, the diameter d is used for

the moment of inertia CO\ fep L?C@j i'

g egn tows)

64 (1.15)

FIG. 1.10 Geometry for three-
paint and four-;_:oint bend tests,

Three-point bending

Four-point bending
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TABLE 1.1 Parameters for the Most Common Roclwell Hardness Tests and the
Corresponding Indenter Shapes*

Diamond
Vickers pyramid P
Knoop Diamond p
microhardness: pyramid
Rockwell
60 k
é Diamond 130 kg
D cone 100 kg
1
B ﬁ‘!ﬂ." 100 kg
F o diameter 60
G steel sphere 150 kg
Liin~
E 4 100 kg
H diameter 60 kg
steel sphere _

Source: Adapted from Callister, 1938, Wiley, used with permission. .
*The A, C. and D tests are caleulated using 100-500¢ = Rockwell number, with t being depth of penatration in

-microns, The B, F, G, E, and H tests are calculated using 1305001 = Rockwell number, with t being depth of
" penetration In microns.

The Knoop indenterisa ﬁyramidal diamond indenter that produces an indentation with long’
and short diagonals in a ratio of 7:1, The Knoop Hardness Number {KHN) is given as

r (1.18)
where P is load in kilograms, L is long diagonal length in millimeters, and Cisa constant

. for a specific indenter, typically 4.2,

1.3.4 FractureToughness

The resistance of a material to the propagation of a crack under a stress applied normal to
the crack plane is defined as the fracture toughness K. The theoretical value of the fracture
toughness of a brittle material is defined as

Kie =+EG o a9)

where E is Young’s modulus and G 1s called the critical strain energy release rate. For a brit-
tle material, G = 2v, where v is the surface energy. For ductile materials, G > 2w, Direct
determination of solid surface energies is very difficult. Thus, mechanical tests are
conducted on samples with known preexisting flaws. The specimen and loading geometries
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TABLE 1.4 Fracture Behaviors of Various Matetlals at Reom Temperature*

Ultimate tensile Fracture toughness, K,
Material strength (UTS} (MPa) {MPa - m*2)
Aluminum alloys 100-800 20-60
Copper alloys 200-1000 140-120
iron alloys and steels 250-2000 10-200
Stainless stoels 800-700 50-200
Titanium alloys 300-1300 40-120
Aluminum oxide 200-600 35
Silicon carhide 250-600 25
Glass 70-200 0.5-1.5
Polysthylenes (PE) £ 20-100 26
Palymethylmethacrylate (PMMA) 40-120 1-3
Polystyrene (PS) 40-100 1-2
Bone 60-150 2-10
Tendon 45-50 -

*Data in this table are often meanin
the component thicknesses necess
be discussed further in Chapter 7

NS
gful only for K. values less than 19MPafrs D, For velues greater than 10 MParmte,
ary to fulfill plane strain conditions are not practical for many applications. This will

1.5 HOW BONDING INFLUENCES MECHANICAL
PROPERTIES :

“_

The nature of the bonds in materials determines the responses of the materials to applied
stress as much as the melting temperature and the crystalline or molecular arrangement, The
three categories of strong bonds—ionic, covalent, and metallic—comprising the bonds
between atoms and ions within crystals and molecules and the secondary bonds between
crystals and molecules determine the mechanical responses of materials (see Rohrer, 2001).

1.5.1 Linear Elasticity

The net result of attractive and repulsive energios, By = Eyyyeive + Erpulsives 10T 2 particular
bond is an asymmetric energy relationship for the spacing r between atom or ion centers
shown in Fig. 1.24a. As the influence of atomic vibration increages at higher temperatures,
the average spacing 7 increases, representing the thexmal expansion shown in Fig. 1,245,
The relationship of the force F between atoms on ions with spacing is found by taking the
slope dEy/dr of the energy relationships.

Elastic properties arc only defined over smail strains so that the slope of the I’ versas
r curve defining the effective spring constant for small stretches of the bonds can be treated
as linear. Then, if F = kr, Young’s modulus, E, must scale with K.

The shapes of the energy and force curves in Fig. 1.24 determine the stiffness of the
bonds. They also give the comresponding strengths of the bonds. The effects of thermal
vibration have an impact on the elastic stiffness and also the thermal expansion coefficient,
Young’s modulus decreases with increasing iemperature and the thermal ¢xpansion coeffi-
cient decreases with increasing temperature. Data for Young’s modulus versus temperature
are given in Fig. 1.25. Figure 1.26 shows that the elastic stiffoess of the bonds indicated by
the room-temperature Young’s modulus scales with the melting temperature. Detailed plots
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‘(b) Eracture toughness
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A.L1 How do the points in the worm in Fig, 1.1
change with strain? (Think of the mathematical defin-
ition of a point.} ) '

A.1.2 Take a string that is originally 1 m in length and
stretch it in three stages.

. (a) Stretchitby 0,1 m,

(b) Stretch it by an additional 0.2 m.
(¢} Stretch it by an additional 0.2 m,

For each stage, calculate and compare the engincering
and true strains.

A.L3 Plot frué sirain versus engineeting strain for

stretching of a string from 1 m to 1.5 m. Plot enough
points to yield a smooth curve.

A.L4 Measure the displacements of M and N on the
Worm in Fig. 1.1 in millimeters. From these measnre-
ments, calculate the tensile strain in engineering strain
and true strain.

A.LS Measire the displacements of M and N in Fig.
1.2 in millimeters. From these measurements, esti- -

mate all four strains 2.

A.L6 Measure the displacerents of the strained
square in Fig. 1.3 in millimeters, From. these mea-
suremeats, estimate all four strains 2.

A.17 Show how SI units of stress can also be
‘expressed as energy per unit volume.

"A.1.8 The Brinell hardness of a new alloy is mea-

sured using a load of 3000 kg, The indentation diam-
eter is 2 mm. What is the BHN? What is the
indentation depth?

ALY Calculate Young’s modulus and the 0.2% offset
yleld stress for the stress-strain curve in Fig. 1.17.
A.1.10 Give common SI units for the following
mechanieal properties.

(a) Stress or ' fm?

OF

/m*2
{¢} Creep rate
(@) Yield strength
{e) Young’s modulus
(D) Poisson’s ratio

B.L1 Assume that a rectangle plotted in the x-z plane -

has dimensions of 2 cm % 5 cm. Apply the following
values of strain to the rectangle.
0.1 0 0.1
0 0 o
03 0 0.1

Give the separate components of shape-change strain
and rotational strain. )
B.12 Write the strain tensor for du; = 0.01, du, =
0.02, dus = 0.01, dx; = dxy = dx%; = 1. Describe the
shape change. Describe the rotation.

B.1.3 Deform a cube by stretching it 20 percent in
the x-direction and reducing it 20 percent in the ¥-
direction. Does it maintain the same volame?

B.14 Assume Fig. 1.17 is a frue stress—true strain
plot. Replot this data and overlay it with the engineer-
ing stress-stwain curve for the same data (similar fo
Fig. 1.18). Why are the curves so similar?

B.15 (a) Using Eq. 1.25, calcwlate the values of B
and r that best fit the data for brass in Fig, 1.18.

(b} Are your values simi i in-the
deseripion-ofEq. 1.257  Scomeitat witl
() EHstimate the strain hardening rate do/de for this
curve at the point of necking indicated on the true
stress-true strain curve,

B.1.6 Use Hooke’s law for multiaxial stresses ta cal-
culate the stresses required to produce the straing
described in Problem B.1.3. (Assume the material is
steel with 2 Young’s modulus = 210 GPa and a Pois-
son’s ratio = 0.2). Is the magnitude of the stresses too
large for just elastic distortion?

B.1.7 Your nearby engineering library should have
ASTM standards for mechanical testing. The stan-
dards include geometries and dimensions of typical
samples. Find the correct ASTM standards for

() Tensile testing of metals or polymers

(b} Bend testing of ceramics

{c} Fracture'testing of metals

(d) Fracture testipg of ceramics.

B.1.8 Estimate the apparent linear Young’s modulus
for the PET samples shown in Fig. 1.22. By finding
the slope up {0 an engineering stress of 40MPg, pre-
dict the modulys for a sample tested at a sirain rate of
Ix102571

B.1.9 Assume that a beam of square cross section is
bent elastically in four-point bending. Describe the
changes that wonld oceur in the cross seetion between

the inner loading points, and show how you would
caleulate the shape.

"C.L1 (a) A wooden plank with a rectangnlar cross

section will be used to span a small stream on 3 hiking
trail. The plank will be expected to carry one person at
atime, The plank will be supported only on each end.
The width of the crossing is 3 m and the plank will lie
about 3 1 above the stream. The maximum width of
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stock available is 0.6 m. The fracture stress of the
wood along the growth direction is approximately 8
MPa. Give your design for a safe crossing.

(b) The frail engineer has sﬁggeste»d that the possibil-
ity of two people crossing simultaneously should be
considered. Show how the safe design of the crossing
would change for the possibility of two people cross-
ing together. [s the crossing safer if the two people are
closer together or farther apari?

{c) The trail engineer has suggested that a round log
would make a more interesting span. Limited to a
maximum diameter of 0.6 m, will the log be more or
Jess safe a:rl. your design for part (a)? w,ﬁ ?‘kc“"ﬂ/
C.l1L2 materials are proposed for the same aj}pli-
cafion. The most critical performance criterion is the
change in thickness on loading under a biaxial stress.

~ The proposed part is a thin plate measuring 4 mm by

4 mm by 0.1 mm. The part will undergo a biaxiat ten-
sile load of 2 MPa. For the properties given below,
rank the materiafs from best to worst.

Ml -E=200GPa,v=03

M2-E=180GPa, v=1025

M3 ~FE=220GPa,v=032

M4 —E=1250GPa, v =035

1

C.13 {(a) Bstimate the yiel% the half-hacd
and annealed brasses in Fig, 1.20.
{b) Calculate the true stress—true strain curves for the

half-hard and anncaled brasses in Fig. 1.20. (o L/ -

e
oot ¢ dota vp 10 % b

[0(4[:'

S wleng

Ol[(,\urm Hor b@j""us)

{c) Fit the data from parts (a) and (b) fo Eq. 1.25.
Which material has the higher strain hardening rate?

{d) For the annealed brass, fit only the data efter the
flow stress has reached the yield stress of the half-

hard brass. Wy J5 the deformation ﬁ similar to that *
of the half-hard brass?

C.1.4 (a) Estimate the yield stress for all three mate-
rials in Fig. 1.21.

(b} Calculate the true stress—rue strain curves for the
three materials in Fig. 1.21(pntor $o ol .
() Pit the data for the two materials in the T6 condi-
tion to Bq. 1.25. Which material has the higher strain
hardening rate? How does this compare with the point
at which necking takes place? Estimate the engineer-
ing strain at which necking starts and calculate the
corresponding true strain. Is this consistent with your
expectations?

(d) For the annealed brass, fit the data up to a true
strain of 0.1 to Bq. 1.25. Compare the value of # with
those of the two other aluminum samples.

C.L5 The plank bridge in Problem C.1.1(2) has col-
lapsed as a result of a fire. The use of a steel tube has
been proposed. A steel tube is available witha f-meter
outer diameter and a l-cm wall thickness. The
moment of inertia for a tube is

k3
I= a(ar;,‘ -df)
where d,, 18 the outer diameter and 4, is the inner diam-

eter. Will these tubes safely support expected loads?
Explain your answer.



SmEss, STRAIN, AND ELASTICITY are most conveniently represented by tensors.
Tensors and the related matrices provide an opportunity to utilize the mathematics taken
through the second year of university in a very powerful approach for understanding elastic-
ity and deformation of materials. The geometric relations given in this chapter also provide
handy tools for solution of many problems related to crystals and composites. The necessity
for tensors may seem obvious when one considers the properties of fiber composites, bt
cubic metals can show strong variations in elastic and plastic properties with the direction of
applied stress. Both the student and the instractor may find that tensors are not easy fo learn
or io teach. If we restrict ourselves to the solutions given for uniaxial conditions or fely on
equations in books for directional properties, we can solve only idealized problems. The goal
of this chapter is to demonstrate the enabling capabilities derived from an understanding that
tensorial relations. are the foundation for physical and mechanical properties.

s d

A common misconception is that cubic
the same in all directions. As shown later in
crystals are isotropic, but elasticity and some similar properties called electrostriction and
magnetosiriction are anisotropic even in cubic fuaterials. One very important application of
single crystals is in the hotter stages of a turbifje engine. The turbine blades located in this
part of the engine typically consist of nickcl—basé single crystals grown with 2 specific oni-
entation designed to resist long-term deformation. These single crystals consist of a disor-
dered phase reinforced with cuboidal grains of an ordeted compouad called an
intermetallic. The anisotropy of the cubic grains is demonstrated by a variation in elastic
constants with direction in the material. The magnitude of this elastic anisotropy in a sin-
gle crystal turbine blade can be surprisingly large, as shown by the values of Young’s mod-
ulus given for specific crystallographic directions in Fig. 2.1.

Other applications of cubic single crystals with strong elastic anisotropies include sil-
icon and gallium arsenide in microelectronics and alkali halides used for their optical prop-
erties. Figure 2.2 defines a standard cubic coordinate system with specific directions
labeled. The values of Young’s modulus in these low-index crystal directions are given in
Table 2.1 for several cubic metals. Tensor representations enable calculation of any elastic
constant in an arbitrary direction from the information given in this table. Other materials
show anisotropy as & result of preferred orientation or texture of the crystals or molecules
that comprise the material. Oriented materials can have strong anisotropies, as shown in
Table 2.2. The magnitude of the anisotropy for many of these materials is dependent on the
degree of preferred orientation. The strain and thermal history of deformation processing

along with the mechanisms of deformation mﬂuence the degree of orientation and thereby
the degree of anisotropy.

terials are isotropic—with all properties
s chapter, many properties of cubic single

33
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Although we assume a symmetric tensor such that G, = Gy, to perform the second-

rank tensor transformation using Eq. 2.7, we must use the correct subscripts for each term
in the transformation

Gij’ = dy i Og

We can then define the stresses at any orfentation in the Xy plane—viz., oy = Gjj
{¢1)—using the rotation matrix

cospl sindl O
ag =|~singl cos$l 0
0 0 1

Then solutions for 6," and 6y’ are given by

3 3
r’
T =Zza1kau°'u
K 1
, ,
O = 01810y + 8181309 +a150110) + a18),0
=cos® ¢1 oy +2sindl cosdl oy, +sin’ $l oy,
O12 = 8ny0yy + 8110501 + 130,03 + 13850

= 5 (cos” 1 ~ sin? 1)+ (o, — 0y )sin 1 cos 1

. Using trigonometric substitutions and setting oy,” = 0, the equations for principal

‘stress become

. -
Spp8g, or gy =TT T2 (UH "U”J +(og ) (2.14)
h N 2
g 2
where 5, is the algebraically largest principal stress, 5, the next lacgest, and 53 the smallest.
These values of stress are the same stresses obtained using Mohr’s circle, which is defined
in mechanics or strength of materials texts.

EXAMPLE 2.2 Principal Stresses for Stress Tensors

Two-Dimensional Stress States

For the Mohr’s cirele shown in Fig. 2.7, the values are given in tensor form as
6.66 F6

(oA 766 —1.66 OMPa
0 o

where the principal stresses are s; = 10, s, = 0, and 53=-5.

Three-Dimensional Stress States

The principal stresses for the three-dimensional stress state given below are found by obtaining the
reots of the determinant shown below. The difference between the diagonal mafrix containing 8P and

- the applied stress matrix defines a cubic equation after the determinant is taken,

SP 0 0) (10 -3 4
¢ SP 0 |-i-3 5 2{MPa
0 0 SP)i4 2 7



m i e s ity g 4 S 4 1 v g

a4’

CHAPTER 2 TENSORS AND ELASTICITY

FIG. 2.7 Schematic of a Mohr's circle,

N

o 5

7

The roots of this determinant are the principal stresses.

" ’ 13 0 O
£s=10 78 0 a
o o 1

An expression for the determinant is the cubic equation for the principal stress, We can set this equal
o Zero;

83—[1.92—1'2&‘-.-1’3:0

where I}, I, and [; are taken from the stresses

10 -3 4
c=i~3 5 2 a - -

4. 2 7

as I[=Gu+622+033
L ={01 + () + (O13)° — G11 - Gop— Gp* O3 — Oy * O

I;=0y;- Oy O35+ 2« Opy* O3+ Op3 — Oy - (023)* ~ Oz * (O13)* — 33 - (Ow)?

The rééulting function can be plotied to show the three roots, as shown in Fig. 2.8. | |

FIG. 2.8 Cubic equation of principal
stresses, showing the roots s,= 13,

@
a
1

..f’ Ot - s, =78, and s;= 1.2 MPa.
af /\
42 0
T 2 / \_/
) =

% A e ————————

0,2 L ! i

0 5 10 15
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{0(6)} - cos(@)

TABLE 2.7 Thermal Expansion Coefficlents for Materials with Different Symmetries

TENSORS AND ELASTICITY

(o)) - sin(8)

Ealmm'na =390 GPa

. Valumina =0.23

sﬁw_ﬂszma

(1~ ¥ atossios

FIG. 2.11 Thermal expansion
“surface” for the data plotted in
Fig. 2.10 from 0 to /2.

Then, if we use the properties of alumina (ignoring the elastic anisotropy of the sapphire), we can vse
Hooke’s law for a biaxial stress state in a thin film {51 = 89, 53 = 0) to calculate the stresses.

[+2 [+ O3
Material Symmetry Temperature °C (10‘316"‘) {108¢Y {105CY
Aluminum Random 25-100 22 22 22
Aluminum® Cuble 26-100 22 22 22
fron Random 265-100 12 12 12
iron® " Cubic 25-100 12 12 12
Silicon nitride Random 25-100 18 18 18
Zinc Random 25-100 20 20 20
Aluminum oxide Random 25-100 6.0 6.0 8.0
Calcite Random 25-100 4.6 45 45 .
Gypsum Random 25-100 24 24 24
HDPE Random 25-100 20 90 e
Epoxy Random 26~100 60 60 60
Silicon nitride* Hexagonal 100-200 13 13 28
. Zing* Hexagonal 25-100 T 14 - nbY
Sapphire* Rhombohedral 25-100 ’ 57 5.7 -7
Calcite* Rhombohedral 25100 -5.6 -5.6 25
- Gypsum* Monociinic 25-100 18 42 22
690 v/o glass fiber Axisymmetrict 25-100 34 34 &
in epoxy
Keviar Axisymmetrict 25-100 59 59 .2

* Single crystals.

* For axisymmetric materials, o is the thermal expansion coefficient along the axis of symmetry.
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BIOGRAPHY

S. D. POISSON (1781-1840)

Poisson taught undergraduate calculus and was a student of Laplace and Lagrange. Using the assump-
tions of Cauchy and Ostrogradsky, v should be equal to one-fourth in all isotropic solids. Thus, isofropic
solids should have only one elastic constant. It was Green that demonstrated that isotropic solids should
have two independent elastic constants. |

where Poisson'’s ratio, vy, is defined as the negative of the ratio of the strain in the i-direction
to the strain in the j-direction owing to an applied stress in the j~direction, yielding
—£4
€, =V OF v12 = —e'""' (2.22)
1

Another familiar guantity is Young’s modulus, which can be related to principal
directiox_xs by E;, the modulus of elasticity in the i-direction. Then

G
g =510, ==

E,
—Va
€g =550y =—V8; = éz 1
i
—V43G
€3 =830 = -V, = és 1
1
. and
1 b 4 —Vi13
Sy=— Sz1=i Sq =——
1 E; E,
For Poisson’s ratio, Vjj # Vj;, because
)
V=~
St
and we already know that S, = 5,,.
If we put all of this together, we can write the matrix of values for the comphances as
1 Va1 Vg 0 0 0
E; E, E;
V2 i mlcy) 0 0 0
E, E;, E;
i~V1z ~Vn _1__ 0 0 o ‘ i
s=|EBt B2 Es . -
4
. 1 |
0] 0 0 0O — 0 —_—
| M{—— 7]
o o0 o o o0 - &
E——
Mé \
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Cpy = S
(S11—Su2)(Su +2542)
1
C44 = g

Using the direction cosines, , m, and n, for a particular reference direction, one can detes-

mine the elastic properties of a cubic single crystal in a particular direction by the
relationship

= Su =8y 2[311 —-Sp —%Sukmz +m*n® + IZ% ' (2.25)

By

Table 2.8 lists C; and Sy values for several cubic and hexagonal materials, Figure 2.14

shows Young’s modutus surfaces for Eq. 2.25 plotted with reference to a fhree-dimensional
coordinate system. .

TABLE 2.8 Stiffness and Compliance Values for Various Crystals (at RoomTemperature)
Material Cn Can Cip Cx;m CyufGPa) Sy Szz  Siz Sas Su(10°GPa)
Cublc ‘

Alumiinum 08— 81 - 28 157 — 570 - 35.1
Copper 168 — 121 — 764 150 — 630 - 133
Gold 186 - 157 —- 42 23.3 — -10.7 - 24
Lead 47 —_ 40 - 144 93 - 424 - 69
Nickel 247 — 147 - 125 3 - -27 - 80
Silver 124 - 934 - 48 229 - 9.8 - 22
fron . 237 — 141 - 116 8.00 - -2.8 - 8.60
Molybdenum 460 —- 176 - 110 28 - 078 - 9.1
Niobium 246 - 134 - 287 66 — -23 - 248
Tantalum 267 - 181 - 826 B - 26 - 12.2
Tungsten w90 _ a0 — -~ 26 - 07 - 6.6
C (diamond) 1076 - 25 -~ 566 14 — .22 — 24
Germanium 129 - 483 - 671 98 — 27 - b
Silicon 166 - 639 = 70.6 77 - -21 = 128
Potassium 4.6 - 31 - 2.6 g2z - -370 - 380
Zine sulfide 108 - 72 - 41 20 — -800 - 24
Magnesium oxide 296 — 9% — 156 400 - -1.0 - 6.5
Sodium chloride 49 — 12 - 13 23 —_ A7 - 73
Lithium fluoride |, 111 — 42 - 62.8 1.1 — -3.1 - 15.9
Titanlum carbide 513 - W05 - 178 29 — 036 - 561
Hexagonal l\“'\ 324 -8 4 g4 50
Cadmium 121 513 40 41 20 COTEE P0E A6 o8 =
Titanium 160 181 92 69 465 970 6.9 -4.7 -1.8 b= 'Z‘ '5
Zinc 161 61 341 50 383 84 284 05 -3 26.1
Magnesium 597 617 262 217 16.4 22 20 -8.0 -5.0 61

(Kelly, Groves, and Kidd, 2000, Simmons and Wang, 1971, Hirth and Lothe, 1982, and Nye, 1857}
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The rotation matrix is then
1 0 0

0 cos®d sind
0 —sin® cosd

leading to the following sequence of calculations for §'44, Where 44 is the inverse shear modulus (or
shear compliance) in the original coordinate system, which is related to the specimen cut at 45° by the
transformation shown above,

844 = 452303 = 4830230250835 mnap
Note first that any 8’ values with subscripts of 1 will be zero, yielding
82323 = 8238378228358 2777 + 22382380395353333 +
8283280383382033 + apR33ananSayn +
AzdsaanaySamy + 2238338538373 +
apfaananSun + 22123828338 19m

= cos? @ sin? ® Syp) + 005> P sin® ® S3333—2 c0s2 P sin® © Syy33 + cos? & Spap + sin' B Sygas y
—oosz@sinztb S3223—0082q) Sinqu 52332 .

Substitating %844 for each of the shear compone.nts} and 1 — cos? @ for each sin?® gives the fi

solution

S%44=45"2373 =4 cos? B(1 - cos® ® ) [Syp ~2825+ Szl + (2 cos? @ —1)2 8y,
Using a value of 45° for ®, the sclution is then
844 = [Sgg ~ 2823 + 833)
9"

which means that by measuring Poisson’s ratio and Young’s moduli at 45° from the 2 symmetry axis
we can recover the shear modulus of the material, |

EXAMPLE 2.5 Stiffnesses for Mo at 25°C in GPa

Most math software and programming languages are not readily suited to tensors of greater than sec-
ond rank, This example demonstrates one way to map subscripts from 4 to 2 using the definitions pro-
vided by a special matrix M. First, we can assign the proper 9 X 9 matrix of 81 terms by setting the
magnitudes of the three independent elastic constants for cubic materials on their principal axes,

= 460 Cpp= 176 Cy= 110 (GPa)

Then the 9 X 9 matrix contains these values at each appropriate position, with

ey €3 62 0 0 0 0 0 0]
¢ ey ¢z 0 0O 0 0 O
Cp ¢p oy 0 0 0 G O O
0 ¢ 0 cpy O 0O oc4p O O
C=l0 0 0 0 cgg 0 0 c4 0
0 0 0 0 0 cyu O 0 cy
0 0 0 cu 0 O ey 0O O
0 0 0 0 ¢4 0 0 cf O
[0 0 0 0 0 cyy O O cgyf
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is applied to a unit cube. Describe the changes, in
terms of changes in length and angles, that will take
place in lines that were in the [111], [110], {1101, and
[100] before the strain tock place.

B.2.4 Two isotropic crystals, with Poisson’s ratios of
0.4 and 0.6 are stretched to an elastic strain of 0.01.
Describe the volume change in each material and the

origins of the response. Compare the results for the
exact volume strain.

B.2,5 If both the crystals in Problem B.2.4 had a
Young's modulus of 2 GPa, find the tensile stress that
‘will produce a transverse strain of 0.005. Determine
the bulk and shear moduli of the two materials.

B.2.6 Plot values of Young's modunius for all possible
directions in the (100), (110), and (123) for Mg0O.
(Hirit: Find the rotation matrix that puts the plane nor-
mal as 2z’ at some rotation of ¢1 and ¢ and then plot
Young’s medulus as a function of §1.)

B.2.7 Write the symbolic expression for C'yy for an
arbitrary rotation of @ for orthorhombic and cubic
symmetsy.

B.2.8 Find the shear modulus for shearing in the
[110] on the (112) for iron and alominum.

" B.2.9 Find Young's moduolns for Gennamum along

[1103.
(a) Complete the rotation matrix

x 0y oz
# 11 1
—_— == 0
2 a2
r -1 H
Y ol = 0
N

(b) Given that Su =098 x 10‘“/Pa, Sl2 =0.27 X

10’“[Pa H.l'ld S44“"‘ 15% lﬁ‘ufPa. find 8 1111 which is
1/E' in the [110}

B.2.J0 Given below are (he room-temperatire com-
pliances of several refractory metals. All of these met-
als have BCC crystal structures.

(a) Which of these metals has the highest stlffncss
along the direction of closest spacing of atoms?

(b) Give the elastic strain expected in the [100] fora

Cr crystal compressed by 2 stress in the {001] of 5
MPa.

(c} If the Cr crystal in paxt (b) has a square cToss sec-

tion with {001} faces before loading, will it stil be -

square while the compression is applied?

B.2.11 The final equation givefi in Example 2.4 pro-
vides the variation of 8'sfwith orientation (@) for
axisymmetric composites and hexagonal crystals.
Using this equation, plot modulus surfaces’
for cadmium and titanium single crystals (Table 2.8).
Plot the surfaces on the same axgs to make a compar-
ison. f

B.2.12 Which of the cubic metals in Fable 2.8 is most
isotropic? Least isotropic?

C2.1 A cylindrical drawn polymer fiber is reported
to have elastic constants (in GPa) of Cyy = Cyp =105,
C33= 18, c;2= 1, C13 = C23 = 3, and C44= C55 =0.8.
Find * for a rotation of © = 30°, Compare this result
with C’ for $1 = 30° and @ = 30°". (Note the axisym-
mety.)

afatt
C.2.2 Find Sy, 814, and Sy’ for eackw¥ the ﬂﬂj’:
teomnin B.2§. -

C.2.3 For a tensile test on a cylindrical specimen that
is deformed by a stress in the z (or 3-direction), what
will be Poisson’s ratios#fy? (Write your answer in
terms of strains &y, but with specific choices of i and j)
C.24 A silica glass has Young’s modulus of 80 GPa
and a shear modulus of 31.5 GPa. We plan to reinforce
this glass with 20 vfo particulates of tungsten carbide
{WC), which has Young's modulus of 530 GPa and a
shear modulus of 219 GPa. Compare the expected
composite Young’s moduli versus volume fraction for
both upper and lower bound estimates assuming that
each phase is isotropic.

Group on Anisotropy
Refractory metal periodic chart factor Su 545 S4;(10-"/Pa)
v VB 0.78 068 .23 2.35
Nb VB 0.51 0.66 -0.23 3.48
Ta VB 1.58 0.69 .16 1.21
Cr ViB 0.69 0.30 -0.04 0.99
Mo viB 0.78 0.28 ~0.08 091
W VI8 1.0 0.24 -0.07 0.62




C.2.5 (a) Forthe properties given in Problem C.ﬁ.4,

write the compliance matrix as S for 100% glass and

100% WC. _

{b) Calculate the corresponding effective mm&l;‘mcef

for an equal fraction composite, Gy L\j> ‘:

{c) Calculate the corresponding effective stiffnesses,

<Cie e o a:-}- "

(d) To find the <Cy>"# for an equal fraction com-

posite, find theSy; mateix for 100% glass and 100%
C and calculate the effective stiffnesses.

(e) Discuss the values found for <Cyj>"2 and
<ijk1>m“”.
C.2.6 Find the principal stresses for the stress tensor
10 12 -
o={12 4 3|MPa
-5 3 -5
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C.2.7 Describe the shape of the three-dimensional
Young's modulus surface for cubic materials with
anisotropy A << 1 and make a skefch.

C.2.8 Find the compliance values for the polymer
fiber in Problem C.2.1. What is Young’s modulus
along the fiber axis?

C.2.9 Estimate the stiffness propesties of an alu-
minum alloy single crystal containing 50 percent
cuboidal silicon particles by weight, assuming that
the cubic unif cells of both materials are aligned with
one another. Find the Voigt prediction and the Reuss
prediction.
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In channel die compression, the material is deformed in plane strain by placing the cube in a rectan-
gular slot that fits smiggly against two sides. The cube is free to deform in the other direction as it is
compressed from the normal direction. The deformation is analogous.to that in rolling with com-
pressive deformation in the normal direction (ND), extension in the free direction or rolling direction
{RD), and near-zero deformation in the confined direction or transverse direction {TD). To reach the
final dimensions, the plastic deformation in this first step is given in true strain as

111—\@— ] 0 347 0 0
0| 2 -
g'= 0 0 O0_|=l0 © i
) 0 ]_ﬂ"'lE 0 0 -034
2

where \/é-_ cm is the x-dimension, the y-dimension is unchanged at 2 ¢m, and the width of the die, V2
om, is the z-dimension after the first deformation step.

“In the second deformation step, the x-dimension is held at V8 cm and the material is free to deform

in the y-direction as it is again in the z-direction. This time the deformation is

0 0. O 0 0
e® = ml”; 0 |=f0 0347 0
0 ~0347
0 o m“’f

Assume that the siress applied to produce this deformation was s = 100 MPa. Using the flow rules for
the first deformation step, the strain ratios are

0.347:0:0.347

Applying the flow rules given in Bq. 3.24, if the magnitude of the stress in the confining direction is
one-half that of the deformation stress, the deformation will proceed with equal and opposite strains-
in the x- and z-directions, respectively. This stress level can be used in both the von Mises and Tresca
criteria to predict deformation under other conditions. Using the von Mises criterion from Eq. 3.4,

01 2 2 17
"'Es +(s_0) + s_is = Cyon Mises

%sz = 15,000(MPa)?

This fixes the yield criterion at one point. Because the yield criterion is simply an infinite cylinder, it
also fixes all other values. The yield stress ¥ for simple compression predicted by the von Mises stress
isthen

(0-0)? + (Y- 0)2 + (Y - 0)2 = 15,000 (MPa)?

80 we can solve for the yield stress as follows:

o

Consequently, the von Mises criterion predicts that the applied stresses for the simple compression
will be less than for the chanmel die compression by

¥= (-\[g / 2).5'
Using the Tresca criterion,

i §—0=Cpusn
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) the nature of the shape change that may have accurred 50 as to help understand any repairs that might
T be necessary.

First, we will need o determine the principal stresses as shown in Chapter 2. We know that 633 =420 0
MPa is already a principal stress. We can find the other two principal stresses using Eq. 2.14: 1

2
120; 20, J(mo;m) +(80)% =280 and 80 MPa

Then, if we use the von Mises criterion, we can write

J (80-280) +(30—(—120))2 +(230-(-—120))2
2

=346 MPa

which is clcérly greater than the specified yield stress. To estimate the amount of deformation that
occurred locally, we first assume that hardening is isotropic. If we do so, we can use Eq. 3.19 to
roughly estimate the amount of effective shear strain. Using the given values, we can calculate

Effective strain Effective stress {MPa)
0.002 250
0.005 286
0.01 318
0.015 338
0.02 353
0.025 365

The values above suggest that the total amount of deformation expected is about 2 percent effective

strain, i we want to predict the shape change, we can use the Levy—von Mises relations of Eq. 3.23
and 3.24, :

Using these relations yields the following principal strains.

0.02f 1 ]
=——{ 280 ——(80+(-120}} }=0.017
& 346_. 2( ( ))]
ol 1
o 8y = —| 80— —{280+(—120 ]=0.00
& = e | 805 {280 +(-120)
002

5]

—120—l(zso+so)]=—0.017
E773

We can check our answer to see that the strains sum to zero, as they should for plastic deformation.

Whenever deformation is driven by a given stress state that meets a cxiterion for shear deformation,
we can express this in a single term called the effective shear stress. Related to this effective shear
it ) stress is a single term that we can also use to represent the amount of shear deformation taking place.

: Both of these terms are used to describe deformation in Chapter 8. Using the values from this exam-
ple, the effective shear stress is

: ' [(80—280) + (80— (~120))? +(280~ (~120))?
Teff =‘v :

=200 MPa
6

and the effective shear strain is

Yatt =2(0017% +(-0) +(-0.017)") = 0.024



ms

leformation on crys-
5. The Appendix to
square-cross-gsection
p direction [101] for
ilanes and directions
ward the tensile axis.
g machine. The rota-
allel to the tensile or
1e stereographic pro-
axis should rotate as
unterclockwise rota-

ud stereographic tri-
any triangle because
hown on the friangle
metry have the same
cur on particular slip
~ rdetail in Chapter 4),
ersse or FCC metals,
1planes, {111}, pro-

isile axis in the stan-
15 for one of the three
iich is the easiest slip

and slip plane normal
-aphic projection.

3.2 SHEAR DEFORMATION OF CRYSTALLINE MATERIALS 95 -

{b) 100

FIG. 3.18 (a} Rotation of the tensile axis during testing of a cubic crystaf orlented for single
slip relative to the erystal axis. In compression, the rbtation would have the oppasite sense.
The rotation related to simple shear ocours about the [121]. (b} Slip on two equivalent slip sys-
tems at the boundary of the standard stereographic triangle.
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FIG. 3.18 Compression of & tetragonal crystal containing domains. All three possibilities for
the domains are shown in projection within the grain.

low, because large strains would involve high resistances to boundary motion. In materials

that do not otherwise deform by slip, such deformation mechanisms can enable these mate-
rials to be more resistant to crack propagation.

3.2.4 Deformation of Polycrystalline Materials

Polycrystalline materials consist of crystallite aggregates differing in orientation. If a poly-
crystalline matezial is considered to consist of randomly oriented grains, then all properties,
including plasticity, should be nondirectional or isotropic (see Hosford, 1993).! To evalu-
ate the problem of a polycrystal, Sachs considered that if the problem is ireated for the aver-
age value of the Schmid factor, for randomly oriented crystals the value of slip in an FCC
metal would be 2.238, so that 6 = 2.2387. Taylor noted that by allowing single slip within
each grain, Sachs’ model would not allow the grains to deform while maintaining intact
grain boundaries. Taylor developed a new model that required that slip take place with the
grains deforming uniformly and thereby maintaining all boundaries. Because each grain in

. the material would then undergo the same strains as those imposed externally on a macro-

scopic basis, five independent terms of the nine in a plastic strain tensor must be identical
(€12 = 31, B13= €21, B3 = B33, and &1 + Ep + £33 =0).
Taylor's analysis of slip was based on the increment of work per unit volume, dw, that

+ is produced by slip on all participating slip systems inside one grain as

< dw :§2 Tiddvi] (3.30)

where T; is the magnitude of shear stress required for slip on slip system ;. The term iyl is
the absolute value of the slip increment on the same slip system. For a single type of slip
system—e.g., <110> (111} in FCC metals—the magnitude of shear stress required to pro-
duce deformation is initially equal for all specific slip systems of this type at the start of
deformation. As deformation proceeds, the work hardening on one slip system may proceed
at a different rate than on other slip systems. Also, in materials with multiple <uvw>{hki}
possibilities for slip systems, the differences in the shear stress required for deformation and -

'A good rule of thumb for deformation studies is that the stress is appiied OVer a cross section containing at
least 10 grains.
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L = f fleye (339

where AV/V is the volume of grains under consideration and f(g) is a function describing
grain orientations. The ODF is commonly normelized such that a random sample would
have an ODF of 1 at ali points. If the magnitude of a point within a contour in Fig, 3.19a is
greater than 1, that orientation relationship occurs more frequently than it would in a ran-
dom sample. If the magnitude is less than 1, that orientation relationship is depleted when
compared with the frequency of its occurrence in a random sample. A single crystal repre-
sents an infinite degree of preferred orientation. Preferred orientations that result from pro-
cessing history in materials can be advantageous or deleterious depending on the final
application of the material, Preferred orientations in rofled stecls are often designed to ful-
1l specifications for formability in later shaping operations. In aluminum alloys, the plas-
tic anisotropy of the rolled sheet hinders the efficiency of the deep drawing process for
manufacture of alumjnum beverage cans, as demonstrated in Fig, 3.20.
The texture of metals from rolling is expressed in terms of the rolling direction
- <mvw> and the plane of the rolled sheet {bki} (see Fig. 2.9). For extruded materials, the
expected textures give pole figures that are axisymmetric about the extrusion axis, as shown
in Fig. 3.19¢. The schematic 111 and 110 pole figures both correspond to a cubic material
with a <111> extrusion direction. The 111 pole figure shows a large number of orientations
in the extrusion direction (top and bottom). The two symmetric bands also shown on the
111 pole figure represent the positions of the three <1113 that lie approximately 70° from

the <111> that lie concentrated in the extrusion direction. Typical textures in engineering
alloys expressed in this way are given in Table 3.4.

AT Astorpnatrons

TABLE 3.4 TypicalTextures for Various Ductile Metals

Rolling

Material Rolling texture

<RD> {RP}
FCC metals, Ag, brass, stainless steel <T12> {110}, <001> {110}
FCC metals, Cu, Ni, Al <171= {112}, <112> {&21}
BCC metals <110 {001}, <1T0> {111},

<12= {11
HCP metals, Ti, Zr (10701 {0001) tilted =~ 30° from plane
HCP metals, Mg [11Z0} {0001}

Extrusion

Material

Extrusion direction

FCC metals, Ag, brass Strong <100>, weak <111>

FCC metals, Cu, Au, Ni, Al Strong <111>, weak <100>

BCC metals Strong <110>

HCP metals Strong <hkd>
Axisymmetric Compression

Material Compression direction

FCC metals <110> strong

BCC metals Strong <111>, weak <100>

HCP metals

Strong 10001]




A32 Calenlate the effective strain for past (¢} of Prob-
lem A.3.1. For a 1-cm® cube, what would be the equiv-
alent degree of deformation in sinple compression?
A3.3 Plot the Tresca criterion for a tensile yield
stress of 5 MPa, defining each of the kines or facets of
the yield surface by a separate equation.
A.3.4 Plot the von Mises criterion for a vield stress of
5 MPa.
A35 Anindividual crystal is deformed such that skip
planes 1 pm apart are displaced by 0.1 pm. What is
the glide strain? If both 6 and A are 45°, what is the
axial strain?
A.3.6 Write the general tensor expression of the type
‘shown in Bq. 3.44 for transformation between the fol-
lowing crystal structures.
(a} Cubic to tetragonal
{b) Teiragonal to orthorhombic
{¢) Orthorhombic to monoclinic

(d) Monoclinic to triclinic

"B3.1 Plot a projection of the Tresca criterion onto an

5153 section of the yield surface at a hydrostatic pres-
sure of 10 MPa for a tensile yield stress of 5 MPa.

~ B.32 Repeat Problem B.3.1 for the von Mises crite-

non,

~B.3.3 For the following stress states (in MPa), deter-

mine if the Tresca or von Mises criterion has been
exceeded, assuming a tensile yield stress of 10 MPa.

0 0 4 10 -2 ¢

(@) 10 8 @ L2 s
B0 0 0 3
. o o o 20 1
M o 1w 12 @ {o 00
0 12 -10 1 0 3

B.34 Calculate the resolved shear stress for slip on
SP = (100) and the SD = {011] for a stress of 10 MPa

applied along the stress axes.

(a) [100;| (&) [123]
(®) [110] (@) [211]
{e) [123] ' ® [121]

B.3.5 Calcufate the axial strain € along [123) for a

-glide shear strain of y = 0.05 on the following pro-

posed slip systems for a cubic material (make sure the
combinations give valid slip systems),

(a) (1107 (T01) {e} [111](0T1)

(b) [111] (T01) ® [1113 112
() [101](111) (& [110] (T12)
(@) [111} (T10) (b} [101) (T11)

38 prOBLEMs 115

B.3.6 Which of the following are Iikely slip systems
in a tetragonal material with ¢/a =27

{a) [110] (001) (@ 1101} {101
(b) [100] (011) (e) {1111 (T01)
() [170] (110) @® 1o 1L)

B.3.7 Find and sketch in an sy — 53 section of the voa
Mises yield surface the value of the plastic strain ratio
for the following stress states (in MPa). Assume that
only yielding takes place in each case, and also calcu-
late the value of Y.

0 4 12 0 1

@ o 8 0 ©i0 00

4 o o 1 0 3

0 9 0 2 0
(b} 10 12 @ -2 5 o ‘
12 -1 0 0 3 ){w

B.3.8 Plot the Schmid factor for a-set of FCC crystals
lying at each of the boundaries of tho§tandard stereo-
graphic triangle (pick at least@ight for each boundary,
including the symumetric points at the corners).

B39 Determine how the factor of 31 comes into
being if we consider that Eq. 3.41 relies on an
assumption that the von Mises criterion holds. How
would this equation change if the Tresca criterion
were assumed?

- B.3.10 Chen and Reyes-Morel (1986) were able to

deform a tetragonal zirconia polycrystal (TZP) in
compression, Explain which features of the transfor-
mation strain tensor (Bq. 3.44) would be required to
make deformation in compression possibie.

B.3.11 (a) A BCC crystal with a [123] orientation
nnderpoes single slip on 2 (112) plane. Find the slip
direction that is most likely.

() Sketch a standard stereographic triangle, showing
clearly the direction of rotation of the stress axis for
compression.

B.3.12 Write the physically distinct slip systems for
slip in BCC metals on the slip system <111> {211).
B.3.13 Write the physically distinct slip systems for
slip on both types of slip systems given for rock salt
materials in Table 3.1.

B.3.14 Find the number of slip systems in Table 3.2
that have the same Schmid factor for the following
positions on 2 standard stercographic triangle: (a) the
{0011-{011] boundary; (b) the [011}-{111] boundary;
(c) the [001)-{111] boundary.

B.3.15 For a material with Young’s modulus of 100
GPa, 2 yield strength of 50 MPa, and parabolic work
hardening behavior, write the stress for a strain of 2%.
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For this material, work hardening occurs at Splastic= 30
£ MPa.

C.3.1 Find the simplified expression relating the
effective shear stress and the following stress states in
terms of ©.

o 0 0 ¢
@@ [0 0 0 @l 00
o 0 00
o 0 0 e 0 ¢
® 6 o 0 © [0 0 0
o o 0 0 -
20 0 0 T o
© |0 0 0 o o0
0 60 0 0

C.3.2 Calculate the Schmid factor of the dominant
slip system for a cubic erystal pulled in a direction
with cosines of [0.81 ~0.46 0.36), assuming <111>
{110} slip, )

(a) Write the Enler rotations (41, @, $2) required to
reach this orientation. : ' :

(b) Write the integer direction indices for a direction
that lies within 5°,

{¢) Show this tensile direction and highlight the cube
triangle on a stereographic projection,

(d) Give the specific easiest slip system and the
Schmid factor value.

(¢) Assuming that slip occurs only as a simple shear
rotation on the slip system, what angle of rotation
- would take place before a second slip system would
bave an equivalesit resolved shear stress? Which slip
system(s) would that be?

C.3.3 Repeat Problem C.3.2 using <110> {111} slip,
C3.4 Repeat Problem €.3.3 using <110> {110} ship.

C.3.5 Consider the Rankine criterion, wherein yield-
ing is predicted if any principal stress exceeds ¥ (see
Fig. 3.5). Does this criterion fulfifl the conditions for
shear deformation given at the beginning of this chap-
ter? Sketch the yield surface in threc dimensions and
with an s, = 0 section.

C.3.6 From a macroscopic viewpoint, hot pressing,
which combines deformation with sintering to pro-
duce densification, is a deformation process. Describe
the type of yield surface yon wonld expect for hot
pressing, including the case for isostatic pressure.
Sketch both a three-dimensional section and an 5, =0
section of the yield surface.

C.3.7 Consider the yield condition for transformable

. zirconia materials in tension and compression. Per-

form a calenlation to find the crystal orientation
wherein the transformation should be easiest for each
case. (Hint: using the resolved tensor components,
relate the strezses and strains such that the most work
is produced for a given applied stress,)
C.3.8 Derive Eq. 3.15.

C.3.9 Find that the necking strain i{ th
hardening exponent, #, for balanced bi¥3 tension.
C.3.10 Discuss the implications of Fig.
value of the anisotropy factor R.

C.3.11 Find e and o relative to a unit cubefusing Bq.
3.27 and 3.29 for slip on [110] (L11).

ernys of the original y
axes or in terms of the axes for FLC iron or marten-
site?
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CHAPTER 4 DISLOCATIONS IN CRYSTALS

FIG. 4.3 Transmission slectron micro-
graph of straight <111> screw dislocations in
tungsten foflowing plastic deformation (by

K. J. Bowman and R. Gibala, unpublished).
Three sets of long <111> screw dislocations
are shown, The foutth set lies nearly perpen-
dicular to the thin foil of material. The other
markings and contrast are mostly surface
rellef and strain flelds in the TEM foil {marker
is in microns).

As evaluation of deformation processes has progressed, the influences of the presence
or absence of dislocations in the deformation and fracture of materials has become a topic
of great importance. Single crystals made from materials that are normally readily
deformed become extremely resistant to plastic deformation if they are made with very fow
dislocations. To define the quantity of dislocations within a material, the dislocation density

P, is.given as

L #.L
P SR ' 4.2
Py v 4 {4.2)

 where L, is the total length (m) of the dislocations within a given volume V (%), #.is the

number of dislocations, and A is the area. An apprciximation of disiocation density that also
fits these units is dislocation number per unit area. When dislocation densities are deter-
mined from micrographs such as those shown in Fig. 4.3 and 4.4, edge effects often cause

(")

@

(@

FIG. 4.4 Schematic showing motion of a dislocation as tracked by repeated stching of lithium
fluoride {LIF) crystals. (a) The largest smooth battom etch pit was formed during the first etch-
ing treatment. {b) The medium smooth bottom etch pit was formed after dislocation motion
and the second etch treatment. (¢} The third sharp bottom etch {indicating the final dislocation
position) was formed after additional distocation mation and the third etch treatment. () The
large sharp bottom pit shows dislocations that did not move from the applied stresses. Part (¢}
shows the actual images of the dislocation etch pits. (Gilman and Johnston, 1967, used with

permission) t} here TLE ’ wft{ 6 of
He o rig ht pit
A L'&bd’ji‘ zoj{iﬂ'\
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s )
n= 2a(l-v) (xz + y'z)z (438)
2_ 2
Oy =0y = b x(x 4 ) (4.3c)

20(19) (7 457

where b is the magnitude of the Burgers vector. Because for particular positions the expres-
sions above include normal stresses, there must also be a Poisson effect given by Hooke’s

-law such that G33 = ~V(Gy; + Oyy). Figure 4.9 shows the relafive magnitude of oy; and the

mean or hydrostatic siress as the dislocation core is approached.
At small distances from the core of the dislocation, the magnitudes of the stresses:
become quite large owing to large sirains. Since the strains are large near the dislocation

_ core, deviations from linear elasticity prevent the possibility of “nfinite” stresses at the

singularity.

EXAMPLE 4.2 Stresses Near Edge Dislocation Cores

Using the values for an aluminum alloy, we will calculate the magnitudes of the stresses du given by
Bq. 4.3¢ for positions along the y-axis, which means that the x-value is zero. )

p=25 GPa v=035 p=29x10"0m

o S GPa(29x10™" @xuﬁ GPa-m
1 B j

“oel-v) Y 2(3.14)1-035)

(a)

o1 S hydrostatic

(b}

FIG. 4.9 Gray scale plots of the stresses (a} oy and {b} hydrostatic stress = {4 + On + Taa)f3 from
Eq. 4.3 as a function of position around the centered edge dislocation core from Fig. 47.Ths extra half-

plane lies in the top half of each figure. White represents compressive strass, and gray represents
tensile stress.
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Distance {10-1° m}) Stress (GPa)
40 0.4
30 0.6
20 0.9
10 -1.8
0 =
~10 18
=20 0.8
=30 0.6
40 0.4

As shown in the ealculation results, the magnitudes of the siresses become quite large, with this lin-
ear elastic relation predicting infinite stresses at the dislocation core, large tensile stresses just below
the glide plane, and large compressive stresses just above the glide plane. At the large strains near the
dislocation core, an assumption of linear elasticity is not 2 good one. |

The elastic distortion of the material outside the dislocation core (wherein the elastic

calcutation would give an infinite resulf) can be calculated as a function of distance from the
dislocation using

__wb
Ee]a,suc - 411(1—1’) J"'o X (4 4)
__wh’ R '
4m(i-v) v)

The core radius r, and the outer radius R can then be used to calculate the energy of
the dislocation, and £ is the dislocation length. The magnitude of r, should be chosen such
that the deformation is still small enough to be considered elastic. The magnitude of the
outer radius can extend to the crystal surfaces if only one dislocation is present in the crys-
tal. For crystals containing many dislocations, half the spacing between dislocations is
often employed to provide an estimate of the elastic energy surrounding each dislocation.
Equation 4.4 also shows that the energy of the dislocation is linearty dependent on the shear
modulus and the dislocation length. The dislocation energy has 2 squared dependence on
the magnitude of the Burgers vector.

The plane of slip for an edge dislocation is completely determined by the plane
defined by the Burgers vector and line direction. With reference to Chapter 3, it is then clear

that the cross product of the slip plane normal, SPN, and the Burgers vector gives the Iine
direction for the edge dislocation,

EXAMPLE 4.3 The Elastic Energy of Edge Dislocation

We can caleulate the energy of an edge dislocation using Eq. 4.4. Consider 1 cm? of a cold-worked
material with = 50 GPa, b=2.5 x 10, and v = 0.3. We will use a catoff of 45 = 1 X 10~ m for the
magnitude of r,. With a dislecation density of p.,. = 1 % 10'* m™, we can estimate an average spacing
of L= (1 x 101%)05=1 % 10-7 m. The outer radius can then be set to half this value, R =5 x 10~ m.
The total length of dislocation in our 1 cm?® of material is I = (1 x 108 *} (10 m/w?) = 1 % 10° m.
Then the elastic energy is calculated as

(50x10° N/m?){2.5x107%° m)2(1x108 m)
4m{1—0.3)

elastic =
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- Equation 4.4 also shows that the ener
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Distance (10~ m) Stress {GPa)

490 -4
30 0.6
20 ~0.9
10 ~1.8
0 o

-10 18

-20 0.9

~30 0.6

~40 0.4

As shown in the caleulation resulis, the magnitudes of the stresses become quite large, with this Iin-
‘ear elastic relation predicting infinite stresses at the dislocation core, large tensile siresses Jjust below
the glide plane, and large compressive stresses just above the glide plane. At the large strains near the
dislocation core, an assumption of linear ¢lasticity is not a good one. |

The elastic distortion of the material outside the dislocation core (wherein the elastic
-caleulation would give an infinite result} can be calculated as a function of distance from the

dislocation using

. |.Lb2£ IR ixn
4'1']'(1 -—1’) s X
w2 R
R

Eelastic =
{4.4)

- The core radius r,, and the outer radius R can then be used to calculate the energy of
the dislocation, and £ is the dislocation length. The magnitude of r, should be chosen such
that the deformation is still simall enough to be considered elastic. The magnitude of the
outer radius can extend to the crystal surfaces if only one dislocation is presesit in the crys-
tal. For crystals containing many dislocations, half the spacing between dislocations is
often employed to provide an estimate of the elastic energy surrounding each dislocation.

gy of the dislocation is linearly dependent on the shear

modulus and the dislocation length. The dislocation energy has a squared dependence on
the magnitude of the Burgers vector,
The plane of slip for an edge dislocation is completely determined by the plane

defined by the Burgers vector and line direction. With reference to Chapter 3, it is then clear

that the cross product of the slip plane normal, SPN, and the Burgers vector gives the line

direction for the edge dislocation:

EXAMPLE 4.3 The Elastic Energy of Edge Dislocation

We can calculate the energy of an edge dislocation vsing Eq. 4.4. Consider 1 ena® of a cold-worked

material with L= 50 GPa, b = 2.5 X 10719, and v = 0.3, We will use a cutoff of 4b = 1 x 10%m for the
magnitude of r,. With a dislocation density of po=1x10Mm2

of L= (1 x10%y05=1 % 107 m. The onter
The total length of dislocation in our 1 cng®
Then the elastic energy is caleulated as

, We can estimate an average spacing
radius can then be set to half this value, R =5 105,
of material is I = (1 x 10" m®)(10 m/m® = 1 x 10%m,

(50%10° N/m?)2.5%107 m)*(1x10® m) (5x107 m
Ee o — |=0.14
clastic 4n{1-0.3) X m |

S S’fﬁ‘f’
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BIOGRAPHY

JOHANNES MRTINUS BURGERS ( 1895-1981)

This specialist in fluid mechanics was appointed as professor at the Technical University of Delft

. (Netherlands) at the age of 23, He is credited with the first real description of a screw dislocation in 1939.

He also helped establish early forms of the expressions for dislocation dlsplacements and dislocations jn
subgrain boundaries.

4.2.2_ Screw Dislocations

A screw dislocation is a spiral defect within a material, The nature of the screw distocation
is similar to a simple parking garage wherein one circuit translates you and your auto up or
down one level. Btching of surfaces intersected by screw dislocations can show the spiral
character of the screw dislocation (see Fig. 4.10). For consideration of a screw dislocation
in a crystal, the relationship between the screw dislocation and an edge dislocation provides
some insight, as shown in the three views of the same dislocation in Fig. 4.11. Of course,
the most distinctive difference between edge and screw dislocations is the relationship
between the line direction of the dislocation and the Burgers vector. For the edge disloca-
tion, these vectors are orthogonal; in the case of screw dislocations, the Burgers vector and
the line direction are either parallel or antiparallel, Screw dislocations with the same Burg-
ers vector, but opposm: line duectlons, have the opposite sign of the tw1st. Unhke the case

simple shear of the 'B.lltollcd cylindrical element, aF

back into the coordinate system of the dislocated cylinder, the only shear strains possible
are those consisting of shear strains with z-components. These strains are given in cartesian

and cylindrical coordinates s
- _b_ y ~b sin® (4‘5 "
€3 = 831—4Tr(a.'z+y2) yp— )
gpmey =t 5 - b cos® (4.5b)

411'(3: +y) 47 r

FIG. 4.10 Disiocation etch pits of
<111> screw dislocations in tung-
sten {a BCC metal). {a} Pits for
screw dislocations that lie nearly
orthogonat to the surface. (b) Etch
pits for dislocations at an angle to
the surface, showing the spiral
ledges assoctated with the screw
dislacations (K. J. Bowman and R,
- Gibala, unpublished].

(a) ' {b)
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All other strains should be zero in an isotropic material. The associated stresses are
given by

O] =0p =03 =0 =0y =0 (4.6a)

by —ubsin®
2 (x2+y2) 20 r

(4.6b)

O3 =091 =

x b cost

Oyy =0y = (4.6(‘,‘)

2'rr(x2+y7’) 27 r

FIG. 4.11 Screw dislocation viewed on a cube of material giving a screw dislocation con-
nected to an edge dislocation to form & quarter loop. Top view is a three-dimensional view with
an overhang of magnitude b on the front right portion of the ¢crystal. Open arrows denote g
shear stress that if high enough would cause expansion of the loop through motion of the
edge dislocation to the back of the crystal and the screw dislocation to the left. Figure at tower
left shows how the atoms in the top half of the crystal {solid black circles) are shifted forward
from their positions abave atoms in the lower half of the crystal (open gray ¢ircles), Schematic
at lower right shows a perspective view of the quarter loop,

'BIOGRAPHY

F R.N. NABARRO (1916~ )

E R. N. Nabarro is well known for developing physical formulations to describe the resistance to dislo-
cation motion and mechanisms of diffasional creep. Nabarro has made many important contributions in
elastic theory applied fo dislocation.

l
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15 |

Dislocations with widely distributed d:slocanmxt%)ﬁore readily than dislocations
with narrow cores. Dislocation width can be expressed in terms of the Burgers vector mag-
nitude for a dislocation, The width of the edge dislocation can be defined as a fixed differ-
ence in displacement, An, of atoms above and below the slip plane. The width of the
dislocation is then defined in terms of the distance over which the displacements are large
enough so that linear elasticity theory does not apply. If, for example, we use bounds of
b/10 for the strain Jevel defining the extent of the dislocation’s width, then the width of the
dislocation core is much wider in Fig. 4.19a than in Fig. 4.19b. The plots of 1Auf versus x
show the disregistry (or deviation from perfect stacking) between the atoms above and

- below the plane.

The examples in Fig. 4.19 are expressed in terms of a stationary dislocation resting
in jts equilibrum, lowest-energy position, When 2 shear stress interacts with one of these
dislocations, it imparts changes in the disregistry curves that change the energy of the dis-
location, Peierls and Nabarro related the dislocation energy to the dislocation posmon by

what is called the Peierls-Nabarro energy, Epy

b 2w
Em:, =i—v) xp( J {4.12)

From this we can obtain the force or, even better, the stress required o move a distocation
by finding the maximum slope of Epy. This is called the Peierls—Nabarro stress, Tpy

\f _ 2 (--21114?] PM@ @.13)

vx . -
TN = (1 ) P
The magnitude of Ty is several orders of magiiwde Tower than predictions based on the

theoretical shear strength and is often close to the observed critical shear stress values for
deformation,

As expected, the Pejerls-Nabarro mode] predicts slip between the planes with the

widest separations. Extended, broad planar dislocation cores are found in materials with

low Tcgss. The advantages of broad planar disregistry are one reason that edge dislocations
are often more mobile than screw dislocations. For FCC and HCP metals, large dislocaﬁqn

(@ A ()

"FIG. 4.19 (a) Edge dislocations wﬁh (a) wide and (b} narrow dislocation cores {after Hull and

Bacon, 1984}, with diagrams below showing the absolute value of the displacement Ay] from
equilibrium in fractions of the Burgers vector magnitude b.
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- BIOGRAPHY

EGON OROWAN (1902—-1989)

Egon Orowan was one of the founders of dislocation theory. As an undergraduate, he was inspired
to think of dislocations from the deformation of zinc single crystals. Orowan also described expressions

for strain from dislocation motion and mechanisms for dislocations 1o climb over obstacies (see Orowan,
19635).

widths result in low resistances to dislocation motion and even the possibility of dissocia-
tion of dislocations to produce stacking faults (see Section 4.5).

Figure 4.8 provides a somewhat misleading view of an edge dislocation since the
atoms shown are really representative of lines of atoms lying parallel to the dislocation. The
individual stretching and bond breaking must take place in coordination with the stretching
and distortion of bonds along the dislocation line. For the edge dislocation line to move
from one position to another, screw segment kinks form and propagate to enable iranslation
of the dislocation line. As shown in Fig. 4.18, kinks formed on edge or screw dislocations
to facilitate glide must have a line direction sense consistent with the glide process.

To this point we have suggested that the applied shear stresses of the type shown in
Fig. 4.7 produce motion of a dislocation. To be consistent with the development of stress
fields and the elastic energy associated with dislocations, it is essential to have an nnder-
standing of how a shear stress produces the virtual force that results in dislocation motion.

Although there are differences in the energies of dislocations that arc of edge, screw,
and mixed character, the differences are small compared to the affects of changing the
length of the dislocation. Formation of a kink or glide step on a glide plane results in a dis-
placement of the material above and below the glide plane at the kink. The magnitude of the
force on the element in Fig. 4.18b is simply tb, where 7 is the shear stress resolved on the

glide plane in the direction of the Burgers vector b. This force arises from doing work Won
a unit length of dislocation to move it 2 unit distance, where ’

= . 4.14
(&)~ dh 7h 4.14)

. . L A
with the terms in this equation! defined in Figure m)

Thus, we have an energy (or force) corresponding to the length of the dislocation and
a force (or energy) required to move a portion of the dislocation that is resisted by the mag-
nitudes of Epy and TpN- .

The examples showing kinked dislocations in Fig. 4.18 exaggerate the nature of a
kink by showing sharp corners. Since the energy of a dislocation depends on its length, the
energy is often reduced by climinating those sharp transitions with the inclusion of mixed
dislocation segments. The Peierls-Nabarro energy also affects the shapes of kinked dislo-
cations. The minimum energy positions defined by Bq. 4.12 are energy hills that must be
overcome 10 move the dislocation from one valley to the next. Because the dislocation must
be continuous and glides by the formation of kinks, the shape of the dislocation will be
determined by the magnitude of the energy barder (sce Fig. 4.20). We also know from Eq.
4.9 that increasing the length of 2 dislocation adds to its energy, Consequently, the shape of
the dislocation is controlled by a balance between the position of the dislocation line and
minimization of its length. By forming a pair of kinks, a process that is assisted by thermal

'Remember that by defining this expression “per mnit length,” this force is scaled to the length or “force per
unit length” '
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A A B A B A B A B FHFG433 Anedge disloca-

: tion that has split into two
Shockley pattlals separated by
a stacking fault {after Seeger,
1957},
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number of FCC metals and alloys. The low-SFE materials have wide stacking faults and
inhibited cross slip. Slip in these materials is often coarse, with slip confined to a few

planes. The high-SFE alloys toward the bottom of the list cross slip easily and demonstrate
. finely distributed slip, .

EXAMPLE 4.4 The Widths of Stacking Faults

We can use Eq. 4.16 to calculate the expected equilibrium widths of stacking faults. We will make a
comparison of Ag and Ni using the lowest values given in Table 4.2. We have the Tollowing data:

Ag SFE=20 mJ/m* p=26 GPa b=29%x10"% m
26x10° (N/m?)(29x107° m)’
Weq = 3 3 =8.7 nm (about 30b)
4n{20%10 Nm/m )
Ni . SPFE=130 mJ/m* = p=79GPa b=25x10"" m

_ 79x10°(N/m?}25%107 o)’
Ve = 4m(130107 Nm/m®)

=3.0 nm. {about 12b)

4.5.2 Body-Centered-Cubic (BCC) Metals

Slip in BCC metals is easiest in <111> slip directions and has been observed on planes
including {110}, {112}, and {123)}. The ecasy slip Burgers vector is -‘2‘-<111>, which isthe
closest spacing between atoms in the structure. In contrast with FCC metals wherein the
extra half-plane represents two AB plane layers of {110}, the extra half-plane in BCC met-
als can involve three layers of {111}, as shown in Rig. 4.34. This does allow for some pla-
nar spreading of edge dislocations. The nature of the planar spreading differs depending on
the plane of slip. The combination of the Burgers vector and the slip plane then specifies the -
line direction t for edge dislocations lying on different planes. The wide edge dislocation
- cores for BCC metals enable easy motion of edge dislocations in these materials.

In contrast, $<111> screw dislocations have cores spread over the threefold symine-
try inherent about <11 1> directions. The spiral of the screw dislocation shows relaxations
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A.4.‘l Distinguish between a kink and 2 jog on an
edge dislocation (a sketch may help).

A.4.2 Give a first-order estimate of the dislocation

™ density for the crystal shown in Fig. 4i1,i\n number per

square meter. &

A.4.3 Describe three examples of dislocations
observed in daily Jife. For each case, provide a sketch

and defipe 2 Burgers vector. Docs each example have
a line of dislocation?

A4.4 Brplain the shape of the dislocation etch pits in
Fig. 4.10q and b.

ﬂ\)“") sider shear stresses applied to the disloca-
tion loof¥'that {2) point to the right above, and to the

left below, the Joop plane and (b) point up on the left
side of the loop and down on the right side of the loop.

@ ) .gw"‘\\t\

A
AA4.6 Foe Burgers vector invthe figure-below is nor-

2al to the plane containing & dislocation loop. Iden-

tify with an B or S the chatacter of the dislocation
around the loop on all sidesf Show the line direction.

A.4.7 For the dislocation skemen in the figure above,
show what forces should be applied to the crystal to
move the dislocation upward.

B.4.1 Give a numerical estimate with comect units for
the energy of a 1-metex-long edge dislecation in MgO.

B.4.2 Single crystals of two different FCC alloys
were tested in tension to the same sirain. If both spec-
imens were originally the same orientation, explain
why one might have slip steps much larger than the
other but with a larger spacing between the larger slip
steps.

B.4.3 (a) A straight screw dxslocauon ina BCC metal
appears to be 2 pm in length in a TEM micrograph.
The direction of the electron beam (normal to the
TEM micrograph) was a <113>. Wha! was the foil
thickness?

(b} I there only one possible thickness?

B.4.4 Two Frank-Read sources are operating on the
same plane. If a shear stress is applied to operate these
two sources, describe the circumstances under which



Fa

the lodps ieeting bétween fhe sotress would create a
larger loop. Assume that cross slip is very difficult.

* Use detailed sketches. Does it matter if the pinned dis-

location segments acting as Frank-Read sources are
of the same sign?

B.4.5 (a) An FCC crystal has been deformed by
shock loading, resulting in formation of high-energy

unjt dislocations. Rank order the likely unit disloca-
tions in FCC metals,

%<10_0> a<100>
F<il> F<l12>
a<lil> a<iil> "

(b) Consider a hypothetical a[100] unit edge disloca-

tion in an FCC metal lying on a (010). Whati is the line
direction?

() White a simple partial dislocation reaction for the

dislocation in (b), giving a specific example.

(d) Is the partial dislocation dissociation in {c) ener-
getically favorable?

B.4.6 Estimate the force (N) between two parallel
straight edge dislocations of opposite sign each I min
length at 20b away from one another. JLxplain your
answer. (Use t = 100 GPaand b =25 A)

BA4.7 If it is assumed that the Burgers vector and
elastic properties are about the same: for 70-30 brass
and copper, which is more likely to undergo cross

— slip? Tustify your answes with a calculation.
C.4.1 (2) Define a [T34TCrystal with square cross sec-

tion wherein the front face contains the easy slip
direction and the side face is algo identified. (b) Find
the angle made byghe easy slip system on both faces.

(c) Find the line direction of edge dislocations for this
slip system. {d)

" cations in the segond easiest slip system(s). () Can

&

X0

ve the line direction of edge dislo-

W

screw dislocating of the first slip system cross slip
onto planes of the second?

C4.2 (a) ABRE crystal contains a dislocation lying at
30° from the ideal line direction for 5<111> disloca-
tions that lie on a {112} plane. Calculate the energy of
this mixed dislocation assaming that Rfr,, =~ 1000.

{b) Why might this dislocation lie along this direction?
C.4.3 Describe the intersection of a 2[11"1] disloca-
tion gliding on a (211) plane with a stationary 2{111]
gliding on a (112) plane in a BCC metal,

C4.4 A prismatic distocation with Burgers vector
a{100] is present in an NiAl crystal (ordered inter-
metallic with cubic structure having Ni atoms o cor-
ners and Al atoms at the body-centered position). The
line segments preferentially lie along <110, Sketch
the loop and give the planes on which these segments
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“can glide. Show how an applied stress could fead to

operation of two Frank—Read sources.

C.4.5 A single crystal of aluminum with a [T45] com-
pression direction is deformed such that the average
dislocation velocity is 1 % 10~ ms™. The dislocation
density is 108 ;2. Estimate the compressive sirain
rate that would produce such a strain rate. Also give
the strengths and weakmesses of any assumptions you
have made.

€46 Express Eq. 4.3 in terms of stiffness Cj;.
CA4.7 Express Eq. 4.3a— in terms of compliances S;;.
C.4.8 Consider the Growan equation (Eq. 4.11). If p,
is considered to increase lincarly during straining and
the resistance to slip is parabolic with strain, does ¥

. change?

C.49 Skeich a process for climb-based dislocation
multiplication for compression.
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Platens Bulging

@ - ®
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FIG. 8.3 (a) Cross section of compression of a simple right cylinder showing nondeforming

dead zones due to friction at the platens. (b} Cross section of the same cylinder after some
compression, showing bulging.

gage sections to compression tests can be quite. challenging. If frictional coefficients are
known, inhibition of deformation by frictional siresses can be modeled using approaches
shown in Chapter 10. Friction coefficients usually vary from beginning to end of the defor-
mation. In the ideal case, plastic deformation occurs throughout a part by uniform shear
. deformation. As shown in Fig. 5.3, friction can result in “dead zones” near the specimen
surfaces in contact with the platens. The height-to-diameter ratio of the sample then con-
trols the volume of material deforming to produce a particular magnitude of strain. If the

dead zone is a large fraction of the sample volume, the stresses to producc plastic defor-
mation will be exaggcrated

EXAMPLE 5.2 Constraint During Compression Testing

The Watts and Ford method (1955) provides an empirical approach for finding a true stress—true strain
curve for compression without the influence of end effects. The data obtained by this method also
allow for measurement of stress-strain behavior to very large strains without the influence of necking
that would occur in a tensile test. Cylinders of equal diameter and differsnt heights are deformed to
identical loads. Then, as shown in Fig. 5.4a, the reduction in height can be extrapolated to a diame-
ter-to-height ratio, d/h, with infinite height (d/A = 0). Figure 5.4b shows that a reduction in friction
through lubrication dramatically affects the strain for a given load. This is not surprising, since the
. coefficient of friction can be reduced by orders of magnitude by lubrication (see Chapter 9). Problem

B.5.6 demonstrates the “strengthening effect” caused by frictional constraint. |

The localized stresses of a hardness test are another example wherein constraint cax -
apparently strengthen a material. Figure 5.5 shows a simple model for indentation of a
material with a flat indenter. Flow paths of the material in each triangular element are
shown by the arrows. If we first consider the deformation as a two-dimensional flow prob-
lem, the flow process of the material under the indenter can be separated into the flow
regions shown in F1g 5.5. A dead zone ex:sts below the indenter where the hydrostanc

e T L - MR, o 2 A PR ~ - A
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FIG. 5.12 Bake-hardened steels have C and N interstitials that provide sirengthening.This
strengthening can be enhanced by a heat treatment wherein the C and N diffuse to the disloca-
tions stabilizing their strain fiekds. This results in a large stress being required for yielding to
oceur. Three steps of deformation are shown, with {a) representing the initial plastic deforma-
tion of a strain aged steel. This material is unloaded and immediately reloaded, as shown at {b).
The second loading shows no vield point since the interstitial C and N have had no time to seg-
regate to the disiocations. Strain hardening occurs through multiplication of dislocations. Dur-
ing the next unloading, long times or light heat treatments at 170 to 200°C {bake hardening}
can alfow for a return of the yield paint due to the pinning of the dislocations by strain aging.
For each loading, some plastic deformation may preceds the upper yield point due to motion
of edge dislocations, leading to the impression that the steel has a lower than expected Young's
modulus. The lower mobility of screw dislocations and the more effective pinning of them by

interstitials leads to formation of the upper yield points. (See the sections on BCC metals in
Chapters 4 and 9.}

to denting {Shi, McCormick, and Fekete, 1998). This “strain aging” process can produce increases in
yield stress of 20 percent even though the total interstitial alloying content (usnally C and/or N) may
be less than 0.01 weight percent. The effect of the interstitials is to reduce the mobile dislocation con-
tent. To once again get dislocation mofion, we must go to a high enough stress level for the disloca-
tions to “break away” from the interstitials. This strengthening is dependent on the time and
temperature of the heat treatment. Once they do, the dislocations can move at a much lower flow
stress. Tensile stress-strain curves for these materials after strain aging show the type of upper yield

point behavior shown for 1020 steel in Fig. 1.19. Figure 5.12 describes the strain aging process as it
is applied in bake-hardened steels. ]

5.2.4 Particulate Strengthening

Precipitation Strengthening Precipitation strengthening (or hardening) is nor-
mally much meore potent than solution strengthening methods. An understanding of
precipitation strengthening incorporates appreciation for nonequilibrivm phase changes
with dislocation mechanics, Precipitation strengthening is particularly effective in

- circumstances under which the alloy can be worked into the near final shape before the

strengthening freatment. Materials can be shaped at relatively low stresses and then
strengthened when at or near the desired dimensions. As shown in Fig. 5.13, the potential

increase in stength from controlled prec;pltanon ofa second phase can be ﬁvefsld or .
. 1 . 1

ig. 1.2
mlght be anhclpated by cvaluanon of Eq 5 a, the pinging pomt spading along the
slocation is critical to sirengthening, as is the strength of the pinning obstacle. If these
obstacles have a different crystal structure, or just a higher resistance to slip, they can func-
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the spacing between the particles decreases as long as the number of particles is increasing. Once the
number of particles baginsto stoﬁ increasing, large pasticles can grow at the expense of smaller par-
ticles. This point also will approximately coincide with the loss of coherency. Incoherent particles will
1ot exert misfit strains and therefore will have a larger limited range of their effects. This stage of
aging is called overaging and coincides with a reduction in hardness and sirenpth.

During the time at which the particles are at least partially coherent, dislocations gliding through the
alloy matrix can enter and cut through the precipitate, but this requires special relationships between
the matrix and the precipitate, The resolved shear stress may also need to be higher than for matrix
shear. If the precipitates have become incoherent and far enough apart, the process of bowing leaves
distocation loops around each precipitate as they pass. This leads to synesgy between dislocation
motion and the precipitates. o:‘m\'tdﬁ |

EXAMPLE 5.5 Gamma Prime Ni;Al in Ni-Base Superall

Tn nickel-base superalloys, an ordered phase called gamma prime (') is usedjto inhibit plastic defor-
mation. The high oxidation resistance of these alloys, which is derived frompassive osidation of Al
and similar compounds, and high strength at high temperatures enable use of these materials in the
tarbines of jet engines. The Y is present.as precipitates that can be 70 volume percent of the alloy
These precipitates have an ordered structore with a cubic wmit cell consisting of Al atoms on the cor-
ners and Ni atoms on the faces. Dislocations in the disordered phase move relatively easily. Motion
of dislocations in the ordered phase is quite difficult. Bach %4.1 10> dislocation in the disordered phase
must pair up with a second dislocation for plastic deformation to occur in the ordered phase, as
shown in Fig. 5.16. The longer Burgers and complicated dislocation reactions esnlt in a high critical
resolved shear stress, as can be seen in the dislocation velocity versus shear stress data in Fig. 4.21.
Unusually, the critical resolved shear stress in this and similar compounds apparently increases
wiihk increasing temperature. For this reason, and because of a resistance to diffusion-based high-
temperature deformation mechanisms, many nickel-base superalloys have a yield strength that either
increases or is almost unchanged with increasing temperature. : |

Dispersion Strengthening When rigid particles entrained within a metal alloy
are not coherent, the strengthening is limited to that attained with the dislocation howing
mechanism with small enhancements from constraint and inhibition of grain growth
resulting in strengthening from grain refinement. If the particles have a different thermal
expansion coefficient than the matrjx, there can also be a strengthening contribution from
dislocations formed during cooling from elevated temperatures, but this strengthening
contribution is often still less than that from coherency strains between a precipitate and
matrix. As discussed in Chapter 6, composites with very fine pariiculates called
dispersion-strengthened alloys provide this type of strengthening and are more stable for
high-temperature applications. Larger-scale discontinuous composite reinforcements,
platelets, and whiskers, with minimum dimensions of 1 pm, have limited effectivencss

FIG.5.16 Passage of a unit distocation in disordered gamma into ordered gamma prime,
resulting in a doubling of the length of a unit Burgers vector.
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0~ g FIG. 5.17 Dispersion strength-
ening of rubber. (a) Natural
' rubber without carbon black
8- ib) powder. (b} Natural rubber with
50 percent carbon black powder,
= gk . {McCrum, Buckley, and Bucknali,
£ 1988, reprinted by permission of
*E;; Oxfard University Press),
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in inhibiting dislocation motion since the spacing is large even for high-reinforcement
additions. These reinforcements often reside at matrix griin boundaries because they
are effective at pinning grain boundaries. These reinforcerents do contribute to
strengthening by constraint, multiplication of dislocations, and grain refinement, but are
not as effective as precipitates distributed throughout a crystal. Filled polymers are
another example of dispersion strengthening, as shown in Fig. 5.17. In many plastic parts,
powdered metals or ceramics are added to raise the elastic stiffness and also to inhibit

plastic deformaﬁonbY ComStra o ,3‘ de &"M‘l"r&-’ as o s S0,

Arscasged 5
5.2.5 Grain Boundary {or Microstructural
Refinement) Strengthening

Control of microstructural scale to produce desired properties is facilitated in most single-
phase alloys by static recrystallization and grain growth following introduction of disloca-
tions through cold work. Like the other strengthening mechanisms, justifications describing
the fundamentals behind the strengthening are not as convincing as the empirical demon-

stration. The original expression for grain refinement strengthening is attributed to Hall and
Petch with the expression

Oyicld = Oy + fed™ (5.16)

where Gy = 7, the tensile yield strength, oy, is the yield strength for a polycrystalline
tnaterial with infinite grain size {or a hypothetical single crysta! of random orientation), k
is a proportionality constant, d is the average grain diameter, and / is an exponent of 1/2.
Although % can vary from this value, by plotting Eq. 5.16 as 6,54 versus 412, a rather
useful relationship description can be attained, as shown in Fig. 5.18 using expected values
for Cu-30Zn brass and copper of commercial purity, Note that, unlike the strengthening
expressions given in most cases above, Eg. 5.16 is expressed in terms of normal stresses
because the shear stress €Xpressions are not as meaningful if a polycrystal is under consid-
eration. Examples of k-values assumning that 2= }/2 are given in Table 5.1. Values of o;,; are

not given, because they are strongly dependent on processing history (e.g., cold work and
alloy content). )

Attempts to represent the basis for this mode of strengthening ysually follow one of .

~ several approaches. First, because it is not possibie except under very special circumstances




174

@

CHAPTERS STRENGTHENING MECHANISMS

In tensile deformation, both materials show a long plastic ranige with a hardening rate that
accelerates with strain. This increasing rate of strengthening is a good indication of chain
alignment producing orientation strengthening, Indications of chain orientation are shown
by the pole figures in Fig. 5.23, which give an crientation normal to the chain lengths in
both matetials. The intensity of this preferred orientation increases with steain.

Another aspect of the deformation of PE and PEEK is that each material undergoes
a decrease in density (or an increase in specific volume) with tensile deformation, but
undergoes almost no density change in simple shear. This shows the effect of dilatant
deformation from chain wnraveling, lamella fragmentation, and a spreading of chain dis-
tances called crazing. Crazing is a dilatant mode of chain spreading observed as whitening

" at crack tips in some polymers.

PE
tension
g=1

{6)

PEEK

FIG.5.23 Crystalline (200) pole figures of (4) PE and (b} PEEK after deformation in tension for Eett= 1
The darker the shading, the larger the number of 200 orientations aligned with that direction {G'sell and
Dahoun, 1824, reprinted with permission of Elsevier Limitad).
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requires a tensile stress of 100 MPa, a temperature of 630°C, and a lifetime of 100,000 ke, which is
longer than the available data. We can use Fig, 6.3 to see if this particular ailoy might be adequate
to fulfill the required application in terms of stress rupture behavior. First, we calculate the LMP.

LMP = 900 K{log,o(100,000) + 20] = 22,500

Using this LMP, we can see that the estimated value is about 200 MPa on this log scale. This value

would provide a safety factor of only 2 for the given application and would include the uncertainty
present in any extrapolation, ‘ . n

6.2.2 Monkmar~Grant Failure Criterion

Another empirical formulation that is applied to metals and ceramics—the

Monkman—Grant failure criterion—employs a power law function of the steady-state creep
rate with

Ay
© =482 i e : (6.5)
" e

where A{nd p are material-dependent constants. As is evident in Fig. 6.4, the failure strain -

in ceramics can be inversely proportional to the steady-state creep rate. By reducing the

-Creep rate, the time to failure can be increased. The exponent p is greater than 1 for mate-
rials showing this relationship between creep rate and time to failure. If p is equal to 1, the
failure strain is independent of the strain rate.

6.2.3 Creep of Polymers

. Creep of polymers is quite different from the creep of metals and ceramics described pre-
viously (see McCrum, Buckley, and Bucknall, 1988). Many polymers are viscoglastic,
which means that although strain may increase with time under a given load, the deforma-
tion can, with time, reverse, after the load is removed, to nearly the.original dimensions.
This can be demonstrated by stretching transparent food storage bags to more than 0.05 to
0.1 plastic strain and then laying them on a table. The bags will continue to undergo visi-
* "ble relaxations for several minutes. At small strains (=1%), viscoelastic creep is nearly lin-
ear and can occur at temperatures above 77 K for most polymers. The temperature

- sensitivity of polymers is quite high, Empirical relations arc often applied to extrapolate
performance of polymers; however, physical aging processes in polymers that change the
molecular structure and uncertainty over accuracy of the extrapolations limit their use in

107 . FIG. 6.4 Creep rupture of sifi-

. conized silicon carblde'With a
Monkman—Grant expongat of p =
1.48 (Wiedarhorn and Hpckey,
1991). -
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FIG. 6.5 (c) Data in (a) replotied at fixed total strain levels. |dYTemperature dependence of fail-
ure stress for PES {McCrum, Bucknall, and Buckley, 1988, used with permission of IC Group}.

_ or fully networked—determine the properties. These materials are often mixtures of very
strong intramolecular bonds and relatively weak intermolecular bonds. For both ceramic
and polymeric glasses, the density is also a good predictor of the expected mechanical
response. The elastic and time-dependent responses both become stiffer or more rigid as the
number of bonds per unit volume increases, Figure 6.6 shows the relationship between spe-
cific volume (or the inverse of density) and temperature for crystailine, partially crystalline,
and noncrystatline glassy materials. Consistent with Fig. there is an abrupt transition
in crystalline materials and a gradual transition in glasseq. Many glass-forming materials
can be at least partially crystallized by holding them just Helow the melting (or crystalliza-
tion) temperature for long times. Some polymers and ics are specifically designed to

fb:u-\‘:

FIG. 6.6 Schematic figure showing
volume versus temperature for a mater-
Melt lal that readily forms a glassy structure.

Volume

Increasing
Fraction
Crystalline

Crystalline
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Differences in the glass and crystal volumes are related to the difference in specific
volume between the glass and crystal at the glass transition temperature and the tempera-

ture dependence of the volmmetric thermal expansion difference between the glass and
crystal. Then we can write

v, 1

Vi AV, +38e(T-T;) - ' €10

PP

where AVg3is the volume difference between the glass and crystal forms at the glass transi-
tion temperature and 3A0. is three times the difference in the linear thermal expansion coef-
ficients of the glass and crystal forms. The factor of 3 comes from the isofropic volume
straint (81 = €1 + & + &) for volumetric expansion. The higher thermal expansion coeffi-

. clent of the glass arises from the more open intermolecular arrangement,

it
PR

"'~ 6.3. STRESS RELAXATION

Stress relaxation (see Fig. 1.14) is a time-dependent fe:zs‘ponsc «of a material to elastic strain-

. ing. Becanse the bonds are stretched elastically, processés of rearrangement within the

material can act to relieve elastic stress. The driving force for relaxation processes is sim-
ply the elastic energy per unit yolume (elastic portion of the area under the stress-strain
curve). Stress relaxation tests are conducted by stretching the material to a fixed elastic
strain while it is in series with a load cell. The material undergoes stress relaxation as the
elastic strain is replaced by plastic strain. The final component deforms at a rate that is dri-

ven by a constantly reducing stress. Following stress relaxation, the component has under- -

gone plastic strain corresponding to the reduction in stress.

Stress relaxation is an important process in processing of engineering components.
Rapid, nonuniform cooling of components from a high temperature can result in residual
stresses. Residual stresses often result from nonuniform cooling or nonuniform deformation
of components. Although all of the stresses within 4 component must balance, the elastic

state of the material can vary with position. It is:often favorable to induce & state of com-

pressive stress near surfaces to enhance a material’s resistance to crack irijtiaticm. Many heat

- treatments, mechanical working processes, and surface treatments are designed to produce
“this type of strengthening, Unfavorable residual stresses can be relieved by heating the
material to a high temperature wherein creep mechanisms are sufficiently active to drive

stress relaxation. Glass laboratory equipment or decorative articles made by glass blowers
should always be heat treated to relieve internal stresses that might cause premature failure.

Stress relaxation also plays a part in the development of microscale stresses in com-
posites and materials with noncubic crystal structures, As described in Chapter 2, the devel-
opment of stresses as a result of differences in thermal expansion coefficients can result in
stresses between different phases or differently oriented anisotropic grains. The stacting
point for calculations of residual stresses and internal microscale stresses owing to thermal

-expansion mismatch is usually a temperature at which the stress relaxation rate is suffi-
ciently high that an assumption is made that the material is uniformly stress-free.

EXAMPLE 6.2 Tailored Stresses in Glasses

The resistance of glass to fracture can be improved by producing compressive residual stress on str-
faces. This & by rapidly cooling the glass surface through the use of air jets. Evi-
dence of heterogengous cooling is often observable in glasses by photoelastic fringes showing a
spectmm of colors forresponding to the stress state of the glass. These fringes are usually visible if

CRAA locf P(H"‘{%PMGA
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Specific volume

1

Compression Compression Compression Comptession

®)

FIG. 6.8 (a) Specific volume versus temperature relationship for fast cooled surfaces {Fland
a slowly cooled interior {S) corresponding to part (b}, (b) The fast cooling exterior portion of
this section from a glass plate subjectad to cooling on both surfaces is shaded. The dimen-
sional changes at sequential times corresponding to part (a} are shown with free displace-
ments in the vertical direction {changes in thickness are not indicated}. Schematic stress

distributions are shown in the lower segments, with times 1 and 3 being essentially free of
internal stresses.

Using residual siresses to improve the fracture resistance of ceramics is a powerful
way 0 improve the performance of glasses and ceramics, but it includes a risk, If
the internal tensile residual stresses are very high, deep scratches or damage that

reach these internal tensile stresses can trigger dramatic and sometimes hazardous
fractures.

you are wearing polarized sunglasses. The presence of compressive residual stress at a surface results

in a soppression of crack propagation from surface flaws, which are the most likely initiators of
fracture.

Figure 6.8 shows the process undergone by the fast cooled surface (F) and the slowly cooled interior
(S) sections of the glass. The subscripts in Fig. 6.8a give the temperature and specific volune for each
of the times indicated in Fig. 6.8%. At the start of the process (time 1), the exterior and intedior sec-
tions are assumed to be stress-free. As the exterior is cooled rapidly, it would prefer to be smaller than
the exterior, but the exterior and interior are mechanically coupled so that a stress distribution results
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with tension on the fast cooled surface and compression of the interior. The fast cooled material never
relaxes to the smaller specific volume possible through slow cooling and remains elastic through the
remainder of the cooling process. If the quench is too rapid at this point, the surface is susceptible to
fracture. M‘,ﬁe quenching rate must be slow enough to avoid fracture at this point.

At time 3, the fast cooled (exterior) and slowly cooled (interior) sections have the same specific vol-
ume, which should relax neady all siresses. This is assisted by the greater potential for relaxation of
the slow cooling interior. By time 4, the slow cooling of the interior has resulted in a smaller specific

volume than that of the exterjor. This differential in specific volumes places the surface in the desired
state of residual compression. u

6.3.1 Mechanical Analogs foi Creep and Stress
Relaxation

The time-dependent mechanical responses of many partially crystalline and noncrystalline
" ‘materials can be accomplished through simple mechanical analogs. The two most common
elements for constructing mechanical analogs are springs and dashpots. A spring element
is just ¢hat, a simple spring constant to describe elastic responses using Hooke's law for a
uniaxial response, ¢ = Ee. A dashpot is the damping component in a shock absorber. The
mechanical response of a dashpot is directly a viscous response where 6 = 31&. By assem-
bling springs and dashpots in series (a Maxwell element) or in parallel (a Voigt element),
different time-dependent mechanical responses can be modeled. The design of the final
model is then related to the expected responses of the strong and weak bonding within the

material.
For the Maxwell element, the spring and the dashpot are in series and undergo the

same stress, and their strains are additive. The rate equation for the two elements in series
is then h '

i —— g — ' 6.11
. dt Edt 3m ©.11)
The rate equation for the Voigt element requires the same strain, yiclding

‘3,)1 %_i_l_ Es=T 31|+—Zt£%+Ea=(r (6.12)

Table 6. } shows the separate responses to creep and stress relaxation for each element type.

6.3.2 “Jump” Measurements of Time-Dependent
Responses

~ Evaluating the effects of stress and temperature on time-dependent deformation at first

appears quite challenging. To recover a complete set of data incorporating the stress depen-
dence and the temperature dependence of the deformation could require extensive testing.
With some simplifying asswmptions, it is often. possible to recover the stress and tempera-
ture dependence of deformation for Eq. 6.1 on just one or a fairly small number of speci-
mens, To recover the stress dependence of strain rate, we know that

of e« g

where 1’ = -,1; and m is the strain rate sensit.ivitjr. I the data are plotted on a log-log plot of
strain rate versus stress, the slope of this curve gives the stress exponent »’ for individual
deformation mechanisms for a number of materials, as shown in Fig. 6.9.
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TABLE 6.1 Simple Spring and Dashpot Elements

—veigt Maxugl ~esewel- U‘afé
General expression \
Machanical model
Differential equation 5(1 9n — +Ee=g
m
Stress relaxation o = Ece-Ettn o=Ee
Creep deformation E= % + :% ' £= % (1— g -Et3n)

23

The stress exponent can also be regbvered by performing a temporary “jump” up or
down in strain rate, as shown in Fig. 1.4, or in stress level, as shown in Fig. 6.10. Assum-~
ing that the microstructure is essentially unchanged and there are no adiabatic heating
effects, the respective change in stress or strain rate can be used to recover m or 71'. The ratio

of strain rates is given as _ ‘
.o (ﬂ] - (6.130)
and the ratio of stresses is given by
.\ . :
ﬂ:(?_f) (6.13B)
oy \E ‘

The temperature jump tests (see Fig. 6.11) enable recovery of the activation energy
Qereep in Eq. 6.1 for the active crecp mechanism by taking a similar ratio of the two strain
rates for dxffenng temperatures, where

Rln(e;/ez)

Qeree =7, ~ 41,

{6.14)

Assumptions included in this include the activity of a single mechanism and no

change in the stress exponent. Similar formulations can be used to calculate #” and Q in fen-

sile tests, as shown in Example 6.3.
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O (6.15)

If we ignore heat transfer to the surroundings, then the self-heating of a uniformly deformed
specimen should be ‘

AT = floata _ foyey

- G K (6.16)
p p

where f is the fraction of stored energy, G, is the average effective stresgf €. is the total
effective strain, p is the density, and C is the mass heat capacity in J/(kg"W). Because heat .
transfer is dependent on time, deformation of materials at high rates can Jead to substantial
self-heating. Because an increased temperature results in a reduction in the flow stress,
deformation instabilities become more likely at higher strain rates, This is particularly true
for materials with poor heat transfer properties. Because heat transfer properties decrease
with increasing temperature, the susceptibility of materials to localized deformation from
self-heating is generally the greatest under hot working conditions. This synergy among

self-heating, poor heat transfer, and temperature sensitivity of flow stress snakes polymers
particularly sensitive to localized deformation.

6.4 CREEP AND RELAXATION MECHANISMS
IN CRYSTALLINE MATERIALS

' For permanent deformation of 2 material to take place, a series of critical atomic scale steps
must take place. In crystalline materials deforming by dislocation glide, stable kisks must
form on dislocations and then the kinks must propagate to advance the dislocation by one
Burgers vector. In crystalline materials deforming by dislocation climb, vacancies must
move to or from jogs on dislocations to result in deformation strains. In noncrystalline poly-
mers with large molecules, parts of the individual molecules must undergo relative
rearrangements that result in an overall displacement. Each of these processes entails a crit-
ical step that depends at least in part on the thermal vibrations associated with bonding (see
Kocks, Argon, and Ashby, 1975; Weertman, 1968, and Seeger, 1957). The energy that must
be employed to overcome barriers determines both the temperature and strain rate depen-
dence of the deformation. Since thermal energy is typically on the order of k7, the increased
amplitude of thermal vibrations provides assistance in overcoming activation batriers.

6.4.1 Rate-Dependent Dislocation Glide in
Crystalline Materials

The strain rate dependence of slip comes from the Orowan equation in the form.

"i! =p J_h'v- (6. 17)
and the rate expression

¥= o exp[m—A fr(t)] (6.18)

where v is the average dislocation velocity and AG(1) is the stress-dependent activation

energy for slip. The value of AG(7) is inversely dependent on the shear stress 1. The preex-
ponential term in Bq. 6.18 is
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Yo=pPubsifor (6.19)

where 5 is the average distance swept out by a dislocation for every thermal fluctuation,
p. is the mobile dislocation density, andf, ; is the attempt or jump frequency. The local dis-

ocation velocity s, - Jo, can be at most the speed of sound iu the material. The dislocation
jump frequency is a fraction of the vibration frequency fipuinsc scaled to the ratio of the
Burgers vector and the dislocation segment length [ by

Lo, =-l;-(fmm) - (6.20)

For low-temperature deformation of alloys, and particularly in pure BCC metals, the
deformation is temperature-dependent. The extent of that temperature dependence is shown
by the nearly fivefold change in yield stress for the stress-strain curves of high-purity BCC
iron single erystals shown in Fig. 6.14a. The temperature dependence of deformation can
be separated into an “athermal” component that scales with the temperature dependence of
modulus 7, and a component that showsa stronger temperature dependence 1* with

T=T + 1" C (621

In BCC metals, the difficulty in moving screw dislocations provides most of the
intrinsic rate dependence for low-temperature deformation. Yield stress data of the type in

Fig. 6.14a can be normalized to the temperature-dependent shear modulus to give arclation
similar to that shown in Fig. 6.145.

The stress dependence for the activation energy of deformation can be expressed as
AG() = AGyy— V@ 6.22)

where V# is defined as the activation or critical deformed volume. The first term i'epresents
the modulus-dependent energy barrier to deformation

AG, & AG, - V'1, _ (6.23)

l

—
i

—i 5% Elongation
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My
(b}

FIG. 6.14 - (s} Series of tensile stress-strain curves for high-purity iron crystals with test temperatures
~ given for each curve {after McLean, 1962}, [b) Shear stress © for deformation as a function of temperature
". normalized to the shear modulus. The terms T, and 7" indicate the magnituda of the athermal and ther-

*.mal companents of the shear stress. Below a critical temperature T, deformation is temperature- and
“ate-dependent, :

R
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which can be substituted into Eq. 6.22 as

AG(T) = AG, - V¥ - 1)
yielding :
AG(T) = AG, - V'1* (6.24)

The scaling of energy barriers associated with t* and %, provides that the barriers

- associated with 7" are more localized than those associated with T, Rearranging the expres-

sions above yields
T=T,+1T (6:25)
and substitating for 7° leads to
I:AG0 ~kT ln(l‘-’-)] (6.26)
T=T,+ 7 ki

i
The activation barrier to slip at absolute zeroff AG,, is not dependent on strain rate. Below
a critical temperature, slip becomes thermally activated and the critical temperature for this
transition is strain-rate-dependent, The critical temperature can be given as

\ I = A6,

In this form, the critical temperature for the transition shown in Fig. 6.14 is strain-rate-
dependent, as shown in Figure 6.15.

The strair rate sensitivity can be written as

> {olnt
m= ( - ) (6.28)
dlny T,y ’ : )
1 FIGURE 6.15 The theoretical change
in flow behavior with increasing strain
& , " rate.The strain rate sensitivity, as inset
: schematically, is dependent on
temperature,
0 :
T
. Increasing strain rate
R
b

T

ER h{q-,_o } (6:27)
\ Y : ‘
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with a fixed temperature 7 and strain history v. Figure 6.15 shows that m is a maximum in

the vicinity of the critical temperature for experiments conducted at two different strain
rates.

An alternative and widely used description of the stress dependence for the slip acti-
vation energy (see Kocks, Argon, and Ashby, 1975) is

AG(1)=AGD[1-(1/1R)”]q  (629)

where Ty is the stress required to overcome cbstacles, pb/l, where [ is obstacle spacing.
Then, if p and ¢ both equat 1, we get

. AG, fiT ,
Y= 0[__] : (6.30)
®
which is equivalent to an expression for power law creep (see next section)
g 17 (631)
For a range of obstacle spacings and obstacle geometries, the constants for disloca-

tion glide fall into the ranges
. ' G<p<l .
W) - _ (6.32)
! 62‘{ l<g<2 _
9@ ' :

The obstacle strengthening strain rate expression can be given as

AG, T '
¥ = o [ 6.33
¥ %GXP{ T [ TR]] (6.33)
1 2
Yo =o{—) fo, : (6.34)
W

where o is a constant that depends on dislocation arrangements. For strong obstacles, the
stress dependence of 7, in Bq. 6.34 can be set as a constant from 10° to 105/s. Table 6.2
shows the relative values of AG, and vy for different types of obstacles.

with

TABLE 6.2 Strengthening cdmponents in Eq.‘ 6.33 {after Frost and Ashby. 1982)

Obstacle strength AG, . Ta - Example

Strong 2up? > _p.’_b Strong precipitates
Medium 0.2-1 pb? = IL—:) Dislocations

Weak

<0.2 ph® << “"_:) Solution strengthening
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400 — FIG. 6.17 Compressive
stress-strain behavior of <112
[ 1394°C 1498°C orientad single crystals of a 3.4
300 1553°C weight percer!thlt)s-ZrOZ aitoy.
The deformation is very ser-
rated, indicating difficulty in ini-
200 tiating dislocation multiplication
and twinning. Also, becausg
= Serrated these ate compression tests, the
1000 low plastic strains before fallure
: suggest that tensile deforma-
tion might show little or no
0 | 1 | l p[asticity for similar strain rates
0 2 & 8 P 10 12 {Mufioz, Wakai, and Dominguez-
Strain (%) Rodriguez, 2001, with permis-
sion of Elsevier Limited).

Stress (MPa)

{100} planes because of the feduced symmetry, The stress levels for deformation at these tempera-
tures are comparable 1o room-temperature values for many high-strength polycrystaliine metal alloys,
but it should be remembered that pure zirconia melts at about 2800°C. Although transmission elec-
iron microscopy resulls confirm that some dislocation motion has occurred in the compression tests
shown in Fig. 6.17, some twins are also present in the specimens. |

EXAMPLE 6.5 Anomalous Yield Behavior in Ni;Al Intermetallics (y')

‘The nickel-alaminuun intermetatlic called v @h;Aghas an unusual dependence of yield stress on tem-
perature. Unlike most other materials, over a wide range of temperatures the yield stress of metal
compounds with this structure increases to a maxirum. This phenomenon is shown for two different
% single-crystal orientations in Fig, 6.18. The yield stress increase continues over a wide range of tem-
peratures until reaching a maximum between 800 and 1000°C. Precipitates with this structure arve
those found in nickel-base superalloys, suggesting one way in which superalloys are able to resist
creep so well at high temperatures. The ordered structure of NisAl, which is cubic with nickel atoms
on the faces of a unit celf and aluminum atoms on the corners, constrains slip into dislocation pairs,
as suggested by the TEM micrograph shown in Fig. 438, The dislocations that produce the deforma-
tion slip on the <101> {111} system, bus the Burgers vector length of the dislocations %<101> only
displaces the nickel atoms in the aluminum sites. This means that the order of the intermetallic wj
be locally interrupted (or out of phase). To be a unit dislocation, it must go from one alux:g?né’:/
“to another or from one nickel atom to another. The two :—12<101> dislocations (Fig. added
together retumn the perfect structure. These dislocations also move differently for tensile and com-
pressive deformation, and this difference is orientation-dependent, as can be seen in Fig. 6.18. The
deformation behavior after the maximusn becomes strongly influenced by the power law creep mech-
anisms discussed in the next section and slip on other slip systems is also observed. [

6.4.2 Power Law Creep

For creep, the steady-state, stage 2 strain rate is often used as a basis for creep mechanisms.
The strongly sloped portions of the creep curves in Fig. 6.9 show power law creep (PLC)
for several materials. Between 0,37y, and 0.67,,, metals and ceramics often show a strong
dependence on strain rate, consistent with Bq. 6.30 and 6.31. In this intermediate tempera-
ture regime and at high stresses, deformation occurs by a combination of glide and diffu-
sion. The power law exponent n’ in Eq. 6,31 can range from 3 to 10. The lower range of 3
is determined by the combination of a low value of AG, in Eq. 6.33 and the preexponential
factor in Eq. 6.34. For low AG,, the applied stress in the exponential has a linear stress

glo
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1000 500 . 250K F1G. 6.21 Relationship
1 YL T between strain rates for
-5 Sy —_—d=10"%m Nabarro—Herring and Coble
-0 : wwm s 22 1076 creep as a function of 7 for two
= 5L grain sizes, The Nabarro-
'% Herring creep curve is piotted
8 2 without symbals, and the
2 ~251 Coble creep curve is indicated
E 30 by square symbols.
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5. .
00 +—
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=
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log (d)

For a constant stress, the point at which the Nabarro—Herring and Coble creep rates are equal as a
function of grain size and temperature can be obtained by a plot of the type shdwn in Fig. 6.21. _
Figure 6.21 shows that decreasing grain size results in higher strain rates for bbth Nabarro—Herring
and Coble creep. Also, the temperature at which £y = & increases with inexessinstempesetaie. Or,

" in other words, Coble creep is dominant to higher temperatures with decreasing grain size (as long as
grain growth is not occurring). This relation can be determined explicitly by setting &;y; =£ and solv-
ing for the two variables  and 7. For the Germanivm data, this yields

13,800

) 30+1(d)

LIt

This is plotted in Fig. 6.22. These relations between deformation mates for different mechanisras are
employed in Chapter 8 to create deformation mechanism maps. | |

6.4.4 Grain-Boundary Sliding

To inhibit formation of internal voids, material must be transferred at the grain boundaries.
Raj and Ashby (1971) suggested that the rate of grains sliding past one another under shear
stress is determined by the grain-boundary shape. The sliding process consists of a relative
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&

(b}

©

FIQ. 6.23 The application of a shear stress ltg\results in normal stresses acting betwaen
grains with {a) sawtooth, {b) step, and (¢) sinusoidal boundaries. The normal stresses between
the grains at this plane are iabeled o, (Raj and Ashby, 1971, used with permission).

displacement of the individual grains, but a pictorial image of gfains skating past one

another should be avoided. Grain-boundary sliding (GBS) expeximental observations on Cu
and Ag bicrystals havé shown that speciméns from the same bicrystal vary in creep resis-
tance, grain-boundary migration changes creep resistance, hard precipitates slow GBS, and
the activation energy for GBS is often equivalent to that for lattice diffusion.
The microscopic steps on boundaries between two crystals are shown in Fig. 6.23. A
~shear stress is applied across the boundary with an atomically smooth interface separated
by a viscous fluid. For crystaitine materials without a grain-boundary phase, the high trans-
port rates niear the boundary effectively provide such a condition, and many ceramics with
a glassy grain-boundary pbasé possess such interfaces. For this case, the sliding rate

between the two crystals is given by the effective viscosity of the grain-boundary phase. For -
rough interfaces, the sliding process must be accommodated by strains at the rough inter-

face similar to those found in friction and wear processes,

The accommodating strains can be elastic or plastic. In the elastic case, once the
stresses at the contact points are sufficiently high, the sliding process arrests. Plastic defor-
mation at this interface can occur by dislocation motion at high stresses and low tempera-
tures. At high temperatures, the local tensile and compressive stress gradients result in

1
i
H
%
i




{b) Plot the ratio of Mdz for a necked area versus the
pmnecked area of a tensile bar for m =0, 0.2, 0.5, 0.8,
and 1. Discuss your results.

B.6.3 Make a schematic plot of molar volume versus
temperature for a given glass as a function of the
macromolecule size using a range of curves spanning
easy crystallization to difficult crystallization.

B.6.4 Two different types of mechanical testing
_ equipment are commonly used: those that apply a
force through a hydraulically actuated cylinder and
those that apply a displacement by rotating screws that
move the grips apart. Which type of equipment would
be best for conducting a creep test, and which would

be best for conducting a stress-relaxation test?
Explain your answer.

B.6.5 A series of strain rate jumps (up and down) are
given in Pig. 1.23 for polyurethane. Estimate the
strain rate sensitivity of the polyurethane material.

B.6.6 Describe why the temperature rise for the same
deformation of aluminum conducted at two different
temperatures, say 100 and 200°C, might be different.
Which temperature would give the greatest tempera-
ure rise for the same deformation?

B.6.7 Plot the activation energics for sclf-diffusion
given in Fig. 6.19 versas melting temperature by esti-
mating the values and looking up the corresponding
melting temperatures. From this plot, estimate the
activation energies for creep of Mo and Ag. -

%.6.8 Plot the creep behavior of a Maxwell elemegit
that is placed under a load of 10 MPa for 1000 sec afid

then under no load for 1000 sec. The Maxwell gie-
ment bas the following propertigs:

(@) E= 10 GPa, 1 = FPakea \(9 MPy *SeC
(®) E=10GPs, 1 =100 Paked VO * Y
(&) E=100GPa,n = FPlees

then under no load for 1000 sec. The
has the following properties:
(b) E= ]_.OGPE,T]_= DA
{c) E= 100 GPa,n = ‘ a/bes
{d) E= 100 GPa, =100 Py

B.6.10 Plot the stress relaxation behavior of a
Maxwell element that is stretched to a tensile strain of

0.1 and held at that Iength. The Maxwell element has
the following properties:

209

6.6 PROBLEMS

(2) E=10GPa, 11 =
@) E=10GPa, =
{c) E=100GPa, i =
() E=100GPa, | =

B.6.11 Plot the stress relaxatio
element that is stretched to a 12
held at that length. The Voig

(a) E=10GPa, 1y=5Aa/sec

likely tg

C.6.3 Estimate the maximum tensile residual stress
for £ rod of a material that consists of a fast cooled
surface that remains glassy while the interior crystal-
lifes. Assume that AV, = 0.01, Gy = 10 106 ¢,
cxyatal = 3 X 108 CL (T - Tp) = 400°C, and Egas =

wndergo dynamic recrystallization?

C.6.4 Derive a relationship for strain rate in two
Maxwell elements in parailel. Assame that the mater-
ial constants (E and 1) are identical in both Maxwell
elements. Plot strain versus time and stress versus
time for creep and stress relaxation of the two parallel
¢lements, and compare these plots wiih the propor-
tional behavior of a single Mazxwell element.

C.6.5 Derive a relationship for strain rate in a
Maxwell element and a Voigt element in series.
Assume that the material constants (£ and 7)) are iden-
tical. Plot strain versus time and stress versus time for
creep and stress relation. Explain each transition.

C.6.6 If you found strain rate jump tests to give differ-
ent values of strain rate sensitivity at different tempera-
tures, what would you give as the possible reasons?

C.6.7 The data given in the following table are based
on the original data given by Grant and Bucklin
(1930, used with permission of ASM International),
for alloy S-816. Convert the data to appropriate units
and plot graphs similar to Fig. 6.32 and b, finding

your best vatue for the constant C. How does this data
’ set compare with that used in Fig. 6.32 and 6.3b7

e a1 1 T TS




B.7.7 Take a half-sheet of paper and fold it on its
diagonal. Use a pair of scissors to cut a notch perpen-
dicular fo the fold. Open the fold, and you have an
angled notch that should result in a mixed-mode
geometry. Grasp the ends of the paper and pull it in
tension until it fafls. What combination of modes did
the initial notch represent? By what mode(s) did the
final fracture propagate? Explain this result.

C.7.1 Write the Mode I stress distdbutions (Table 7.2
or above) in Cartesian coordinates.

€.7.2 Write the Mode II stress distributions in Table
7.2. in Cartesian coordinates.

. C.7.3 Write the Mode IIY stress distributions in Table
7.2 in Cartesian coordinates.

C.74 Wiite the Mode I displacement distributions in
Table 7.2 in Cartesian coordinates.

C.7.5 Write the Mode I displacement distributions in
Table 7.2 in Cartesian coordinates.

C.7.6 Write the Mode III displacement distdibutions
“in Table 7.2 in Cartesian coordinates.

€.7.7 I the formation of a process zone is based only
on dilation (volume increase), what would you expect
to happen to the process zone size in a thick specimen
- (how would it compare with Fig. 7.12)?

C.7.8 Determine the relative shapes of the plane
stress contours for the plastic zone using the Tresca
criterion. This will require use of a spreadsheet, 2 pro-
gram, or math software.

(.79 A volcano has erupted on your small coastal
island and you know it is urgent to move all of your
. belongings, The capacity of the steel bridge that con-
nects you to the coast is about that of your truck even
before you load it. Unfortunately, you have noticed a

- . crack freshly initiated by an carthquake associated

with the volcano, The crack is in a primary load-
bearing span of the bridge. It looks bad. Helicopters
and boats are not an -option. What could you do to
reduce the risk of the bridge collapsing when you
drive across #? You have very kttle time, but'a good
set of tools (and safety glasses).

C.7.10 Toughening of brittle materials has been
accomplished by transformation toughening. The
toughening is accorplished through the effects of the
transformation strains—the differences in unit cell
dimensions before and after transformation. Discuss
the effectiveness of the following transformation strains
in producing toughening in both plane stress and plane
strain conditions, (Also see Chapter 3.)
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004 0 0
(&) Er = 0 =004 0
0 60 0
004 O 0
™ er=| 0 004 o
0 0 0o
001 004 O
@ ;=004 001 0
0 0 002

C.7.11 Find the stress contour for 101 MPa for plane
strain conditions using the data in Example 7.2 and
the values of f given in Table 7.2. Compare yonr result
with that given in Example 7.2

C.712 Use the von Mises criterion to determine the
value of r at which the elastic stress solution will
reach a yield stress of 2 MPa at 8 = 0 for the data in

Example 7.2, Give solutions for both plane stress and
plane strain conditions,

C.7.13 The fracture snrface of a failed bolt shows

& small half-peany crack has formed at the botém of Q

one of the threads. First make a sketch of thefracture
surface, and HRTCwST-supempesition-tocalostate the
failure load given the following data:

The thread: D = 5 mm, d = 4 mm, K= 18 MPa Vm
The half penny: a = 0.08 mm

C7.14 Pete the glass blower spits on a small notch he
has made jn glass to make a cleamer break before apply-

ing a bending Ioad. What is so special about Pete's
saliva ihat makes the glass fracture easmr" (It works!)

C.7.15 For an infinite thin plate with a center crack
with & length of 2¢ = & cm and a stress of 10 MPa: (a)
Calculate the principal stresses at

{(r,6) =1 pm, 30°

100 p, 30°

1 pm, 45°

100 pm, 45°

1 pm, 60°

100 ym, 60°

1 pm, 90°

100 pm, 90°
(b) Which points will exceed the Tresca yield crite-
rion assuming that ¥ = 200 MPa?
(&) Show the “orientations” of the principal stresses.

s
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EXAMPLE 8.1 Deformation Mechanisms in lce

Consider uniaxial loading of ice at —50°C and a compressive stress of 10 MPa. We use Eq. 3.20:

2 2

L‘ Tepr = —-——-(10) ;(10) =5.8 MPa
To get the actualfvalue of the stress ratio on the y-axis in Pig, 8.2, we need the shear modulus of ice
at that tempera

- We can see that at the solidification temperature the shear modulns of ice is about
1 MPa/3 x 1073V = 3 GPa. At a temperature of -50°C, we expect the modulus to be higher, so we can
expect that it might range from Irpto $3GPa. This estimate fits pretiy well with the data in Table 8.1.
The corresponding ranges are shqwn on the DMM with resulting shear stress ratios of 1.5 x 107 to

1 X 1073, The expected effective g rate is then ¥4 = 1077/s. Then, using Eq. 8.1 and the
Levy-von Mises relations, we can dalculaic the

principal strain rates as follows:
& g 2f107) 34 3 - |
- =:II_O=-§(?8_} € =-3.8x%10 /s
""10—5(0'!'0) ’
X . -7
O—E(—IO'PO) -

Research on ice is conducted by scientists and engineers who study motion of the
polar ice caps and glaciers, High pressures and high homologous temperatures can

lead to significant creep rates, and dynamic recrystallization is often part of the
deformation seen in glaciers. .

Temperature (°C)
101
Z 102 —~
& E
o 2
g g
£ 108 o
5 ¥
@ o
z i+ o
- B
[ [
(E) 10-5 AW -E
£ 10 Pure | Diffusicnal \?ow «
ure lce _ 102
d=0.1mm (ah) (Lattice)
10-6 ] | i 1 LAY

0 0.2 0.4 0.6 0.8 1.0
Homologous temperature (T/T;,)

FIG. 8.2 Plot of normalized stress level versus homolegous temperature of ice with a 0.1-mm
grain size. lce shows a very high resistance to deformation just below its melting temperature.
The highly directional character of its bonding imparts this high strength relative to its elastic
constants. The small gray square inset represents the range of deformation conditions dis-

cussed in Example 8.1 {Frost and Ashby, Deformation Mechanism Maps, Pergamon Press, New
York, 1982, with permission).
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252 CHAPTER8 MAPPING STRATEGIES FOR UNDERSTANDING MECHANICAL PROPERTIES

The positions of some boundaries in DMMs depend strongly on microstructure, with
dislocation density affecting glide and climb and grain size having a significant effect on
diffusion creep mechanisms. The effects of grain size and dislocation density on nickel with
commercial purity are shown in Fig. 8.3. In Fig. 8.3, increasing grain size in a work hard-
ened material results in strong decreases in the diffusional creep rates, expanding the regime
of stresses and temperatures over which power Iaw creep is the dominant mechanism, In the
first of these materials, shown in Fig. 8.3a, the small (1 mm) grain size results in a diffu-
sional flow regime in which boundary diffusion (Coble creep) is the dominant diffusion-
based mechanism nearly to the melting temperature. Because Eq. 6.33 is used for
dislocation glide, the obstacle spacing resulting from prior work hardening has an effect,
For this and all subsequent DMMs, where appropriate, the obstacle spacing, , is given in
the caption. Figure 8.3¢ shows that a distinctly separate range of boundary diffusion can be
separated from lattice diffusion (Nabarro-Herring creep) at a grain size of 1 mm. The posi-
tion of this transition between dominant regions for Coble creep and Nabarro-Hetring
creep is determined using the same procedure as that shown in Example 6.5. Figure 8.34,

Temperature {°C) FIG. 8.3 DMMs for pure nickel
1 0_1-—200 0 200 400 600 800 100012001400 . with grain sizes of {a) 1 pm and (b)
AL L L N N S 10 pm with a work hardened
Ideal shear strength © obstacle spacing of i=4x10% m

= 10-2f 102 & {Frost and Ashby, Deformation
2 z Mechanism Maps, Pergamon
‘"m—; . § Press, NewYork, 1982, with
g 108 102 S permission).
7] [+
. o
3 %
10 %
8 %
5 105 5
= 10-",\
: 1 101
0% ""%2 04 065 08 10
Homoldgous temperature (T/7,,)
@& ' '
Temperature {°C)
=200 © 200 400 500 800 100012001400
Ll T T f T T
4 Pure nicke
Ideal shear strength “d=10um

2

3 3

Shear stress at 300 K (MN/m2)

3
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8.1 DEFORMATION MECHANISM MAPS 257

ticity shows almost no dependence on strain rates
city in a polycrystal are faicly high owing to the im-
ited number of slip systems. In contrast, the regimes over which power law creep is the
dominant deformation mechanism are quite large. Recrystallization also occurs over a rel-
atively wide range of stresses and temperatures.

For polycrystalline silicon, it is clear in Fig. 8,75 that the highly covalent diamond
cubic crystal structure does not readily enable slip at low stresses and also ¢hat diffusion
contributions to deformation are very sluggish. In fact, many of the features of the DMM
for silicon are similar to the example for ice shown in Fig. 8.3. In ice, the highly directional
bonding between individual water molecules and the associated difficulty of diffusion of the
water molecules through the ice result in a material that is substantially resistant to plastic
deformation even near its melting temperature. Although Si is an-clement, the directional-

Temperature {°C) ' EiG. 8.7 DMMs for {a) the close-packed
—200 —100 0 100 200 300 400 hexagonal metal zinc with a grain size of
[ Heatsheestendh, _ _F T b Zine 0.1 mm, (b} the diamond cubic materlal si-
’ d=0.1mm 109 ieon with a grain size of 100-um and the

2

3

T02 &  strain rate contours given in logarithms of
g £ base 10. {Frost and Ashby, Deformation
E;:: @S  Machanism Maps, Pergamon Press, New
% 10-3 ¥ York, 1982, with permission).
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Temperature (°C) FIG. 8.8 DMMs for grain sizes of
. 500 1000 1500 2000 2600 {a} 0.5 um and {b} 10 pm for a
I [ { I ceramig alloy consisting of yttria
9, % Cubl - ZrQy L .
ds:v:il: ;:nCuhlc Y20 and zirconia. The composition was
: Plasti chosen so that considerations of
102 oty - 168 phase transitions that would be pre-
2 N\ N\ Power law creep .~ &  Sentatother compositions would
83 : £ not be necessary. (DMM con-
g ook o - structed by Purdue MSE 555 stu- -
@ g  dents Duan, Elsner, Oppong, and
. _%c? ®  Vest, 1593)
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investigated, this example of an estimated DMM can be constructed
Beneration of the zirconia maps aré given in Table 8.2 along

with the references and relevant equations from Chapter 6.

The temperatare dependence of the shear modalus

comes from data by Kandil et al. (1984), who

reported shear moduli for ytiria-containing crystals at 293 K and at 973 K. For each temperature, the

shear modulus is lineart
saggest a diménsionless

y extrapolated to the composition 9.5 mole percent yittia. These values
temperature-dependent coefficient (d/dr) of 0.72 if we assume that the

change in shear modulus with temperature is essentially linear. The activation energy foi plasticity

reported by Dominguez-Rodri
three times Jarger than the activation en
and Ashby (1982) for ThO, and UQ,,

guez et al, (1986} for the alloy 9.4 mole percent Y203-Zr0, is néarly
ergies for lattice resistance controlled plasticity used by Frost
50 this should have a significant influence on the DMM of
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10.1 IDEAL ENERGY APPROACH FOR
MODELING OF A FORMING PROCESS

S i

The ideal energy approach relies on a very basic energy balance wherein the applied work
is set equal to the deformation energy (sce Wagoner and Chenot, 1997). No friction effects
or heterogeneous deformation are considered in this model of a forming operation, so we
can consider the process a lower bound. No die geometry. is considered in this model of
deformation. Simple tensile deformation of a reduced section that is well away from the
enlarged heads wherein the material is gripped can be considered an ideal process. The
work per unit volume conducted in a tensile test can be described as

) |
Wigea = [ " ol (10.5)

where the effective strain &.4= In(Agua/Aimisa)- If we use the power law hardening expres-
sion introduced in Eq. 3.19, the ideal work is then

Ke r+l
Wigwg == (10.6)

. We can apply this ideal concept to forward extrusion, as shown in Fig, 10.10. Then
the amount of work applied per unit volume can be related to the extrusion pressure by P, >
Wideal Similarly, the minimum stress required to pull the material through the dies in draw-
ing is Gy, leading to 64> Wigey. Some simple corrections can be made to evaluate the defor-
mation efficiency of an actual process, but these mostly consist of factors that are better
evaluated by the techniques given in Sections 10.2 and 10.3.

EXAMPLE 10.2 Calculation of the Ideal Drawing Stress

A rod of an aluminum alloy has been reported to have a strain hardening behavior given by.ogﬁ-=
350e,"* (MPa). We would like to calculate the expected drawing stress if the aluminwn alloy is to
be reduced from an origiral diameter of 15 mm to 13 mm. First we wonld like to find the effective

strain, which is given by 0 2 5'6
scﬁ=21n§=‘e.—r43"

¥ we apply this strain in Bq. 10.6 we can write

Wigeal =

13
00 215 MPa=21.5x105 2 |
13 - -

FIG. 10.10 Schematic figure showing extrusion of a round cross section and the changes in
shape for a selected element, .
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A”/Z'

FIG, 10.1 Detailed rolling
geometry showing two rolls
moving in opposite directions -
to deform a slab of material to
a height reduction of Ah.The
approximate contact length of
the rolls is L. As shown in this
. diagram, the plastic deforma-
tion takes place principally in
the rolf bite, which is shaded
gray. The increase in velocity
from the entrance to the exitis
shown along with the interme-
Vi<Vi<¥ diate velocity.

|t ¥ ]

The contact Iength for the near plane strain compression conditions in the roll bite is
given by the approximation L == m as shown in Fig. 10.1. About midway in this length
is a single position, called the neutral point, that indicates the line of contact wherein the roll
surface velocity v; is equal to the velocity of the material. The transition in relative veloci-
ties is shown in Fig. 10.2a. Because of the relative motion of the material with respect to the
rolls, the frictional forces develop as illustrated in Fig. 10.2b, which shows a pressure max-
imum at the neutral point along what is called the friction hill. The friction hill can be
described by the pressure function

P =;%(exp£‘§£_1)ao (0.1)
where h is the average height of the material in the roll bite, (f;— A2, pip is the frictional
coefficient (discussed in Chapter 9), and G, is the average plane strain flow strength, 2k, or
the shear yicld strength as defined by the Tresca relationship discussed in Chapter 3. If work
hardening is considered, the value of the average flow strength is just (2Kinia + 2kgna)/2,
whiere 2kipi is the initial flow strength and 2kgy, is the strength following the rolling
process. The deformation in the roll bite is nearly plane strain owing to the constraint pro- -

vided by the material before and after the material within the roll bite, as shown in Fig. 10.3
and demonstrated in Example 10.1.

. Contact
Velocity
difference pressure

Neutral point Neutral point

Viaar lower Kiction

(@ ©

FIG. 10.2° {a) Schematic velocity differentials and neutral points in the roll bite. (b) Schematic
pressure differentials along the roll-material contact langth.




