

Investigation of 3D Printed Alloy 718 with **Oxide Dispersion**

Tyler Lucas, Nolan Miller, Abigail Mitchell, Xuanyu Sheng Faculty Advisors: Dr. Xinghang Zhang **Industrial Sponsors:** William Jarosinksi, Jack Lopez, and Praxair Surface Technology

School of Materials Engineering

Abstract: To improve the high temperature mechanical properties of 3D printed nickel-based superalloy (Alloy 718), the use of oxide dispersion was investigated. A small amount of yttria particles were ball milled into the Alloy 718 matrix. Their microstructure and mechanical properties were examined and compared with the 3D printed Alloy 718 without oxide particles. The addition of yttria oxide did not result in cracking or a loss of ductility. A more significant strengthening effect is anticipated if the size of oxide particles can be reduced further.

Powder Bed

This work is sponsored by Praxair Surface Technologies in Indianapolis, IN.

Making our world more productive

Project Background	Microstructure Analysis	Mechanical Properties
Leeerneuvolerheelie op odditivo	XRD: XY planes scanned	Uniaxial Tensile Testing
manufacturing technique used	ted Powder There shifts	were no drastic peak when Y_2O_3 particles Figure (right) : Engineering $\frac{1}{200}$ stress vs engineering strain for

for 3D printing that uses a layer deposition process to melt a powder material. Laser energy density (ψ) is an empirical metric Schematic of laser powder bed 3D printing. used to measure the optimal parameters for 3D printer printing.

Alloy 718 is a nickel based superalloy that is commonly used in the aerospace industry, highly weldable, and strong. At high temperatures, Alloy 718 needs increased creep resistance and mechanical strength. Incorporating oxide particles into the Alloy 718 matrix will fulfill these needs. There is a risk of losing ductility and creating cracks if the oxide particles are improperly introduced.

The project goal is to strengthen Alloy 718 with oxide dispersion strengthening (ODS). ODS consists of two possible strengthening mechanisms, dislocation pinning and deflecting crack propagation. [1]

Materials

Alloy 718: Metal powder produced by gas atomization with a particle size of $30 - 50 \mu m$ was used for printing parts. Powders were produced by Praxair using their typical production parameters. [2]

Yttrium Oxide: Particles of yttria were ball milled into the

SEM: Microstructure Comparison

The SEM imaged revealed that after adding Y_2O_3 no significant cracking was introduced to the system. Cellular structure was also observed in these samples.

ΟΚ

EDS: Y₂O₃ Detection

Lase (**) C: 718+1wt% Y₂O₃

AI K

tensile bars with	י 1 wt.%	yttria.	8 Ruess	- 00				- 8
The 718 label in	ndicates p	oure	ing S	00 - 00			- A	- 6
Alloy 718 printe	d at posit	tion E.	Jineer 40	- 00		_	-C -E	
Figure (below)	: plot of 0).2%	о, Ш 20	00 - 00			- / 18 - I	
offset yield strea	ngth with	respec	t				-G	
to scan speed a	and laser	power.				15 20	25	30
The red arrow s	shows the	e trend.		0	Enginee	ring Strain (%	6)	00
Viold Ctropath		Scan S	Speed	(mm/s)	The	pure	e A	lloy
rield Strength (MPa)		864	960	1056	718	samp	ole '	was
Lasor Power	256.5	597		583	stres	S	relie	eved
	285		609		while	the o	sam	nles
(• •)	313	637		608			Juni	

608 with yttria were

tested as printed. The stress relief was performed at 982°C for one hour. This stress relief likely precipitated γ' and increased overall strength of the pure 718 sample with deformable particles to pin dislocations.

Table: Calculated mechanical properties for tensile specimens with 1 wt.% yttria (see DOE) and pure 718 with position E print parameters.

Property	Α	С	E		G	718
Modulus (GPa)	90	89	86	111	114	130
0.2% YS (MPa)	597	587	609	608	637	744
Tensile stress (MPa)	942	904	924	921	917	1166
Strain Hardening Coef. (n)	0.128	0.120	0.126	0.128	0.126	0.128
Elongation (%)	21	24	25	22	22	30

Figure: fracture surfaces for a tensile bar in position I on the DOE.

Alloy 718 powder at 1 wt.%. Particle size ranges from approximately 1 – 5 µm. **E** = Laser Power (W)

E

Design of Experiments (DOE): The equation for $\psi =$ calculating laser energy density (ψ) is shown to the right. The thickness (d) of each layer of particles is 0.11 mm and the hatch spacing (h) held constant at was

(G) $\psi = 82.47$ (H) $\psi = 74.22$ (I) $\psi = 67.47$

40	um
τU	MIII.

0 μm.		Scan Speed (mm/s)				
		864	960	1056		
	256.5	(A) ψ = 67.47	(B) ψ = 60.72	(C) ψ = 55.20		
Laser Power (W)	285	(D) ψ = 74.97	(E) ψ = 67.47	(F) $\psi = 61.34$		

Specimens examined are highlighted in yellow.

313

Experimental Procedure

Laser Bed Printing: EOS 290 laser 3D printer used for production of samples is shown on the right.

was performed with the XRD Bunker D8 Focus diffractometer with a 20 scan from 30° to 90° using a Cu- α wavelength emission of 1.54056 Å to prospect for general peak locations.

The EDS analysis confirmed the presence of the Y_2O_3 , indicating that Y_2O_3 particles can survive the high processing temperature.

Y₂O₃ Morphology

Microhardness Tests

An indentation (right) on the surface of a cube sample describes the hardness of the material. A greater average diagonal length is indicative of a softer material. The microhardness is typically three times that of the flow stress, which is depicted in the table below

	Α	С	Е	G		Pure 718
Avg Vickers	276.4	276.5	256.1	253.5	283.0	317.4
Microhardness	±5.7	±8.2	±17.2	±7.2	±10.7	±7.2
ow Stress (MPa)	92.1	92.1	85.3	84.3	94.3	105.6

For the E position on the DOE, a two tail t-test with 5% significance level found that there was a significant decrease in strength from pure 718 when 1 wt.% yttria was added. The statistical analysis also showed that positions A, C, and I on the DOE had significantly higher Vicker's microhardness than G and E, however within these groups there is no statistical significance.

Conclusions

• The addition of oxide inclusions was successful and did not compromise the mechanical properties of laser printed Alloy 718.

Scanning Electron Microscopy (SEM): Both the cubic and dogbone samples were analyzed with a Quanta 650 scanning electron microscope.

Energy Dispersive X-Ray Spectroscopy (EDS) analysis is also performed, to investigate the chemistry of the samples and locate the yttria particles.

Uniaxial Tensile Testing: Tensile bars 7 with the dimensions seen to the right were mechanically tested with a crosshead speed of 0.001mm/s.

Vicker's Microhardness: An AMH55 Automatic Hardness Testing System indented nine measurements into each XY plane of cubes with varying printing parameters and a 200 g force. The average length between the diagonals of each indent was used to determine a Vickers Hardness Number.

The morphology of the oxide particles depends on the printing parameters. The printing parameter E (960 mm/s, 285 W) leads to the smallest and spherical oxide particles. Whereas, agglomeration of yttria occurs when applying other printing parameters.

Acknowledgements

The team would like to acknowledge the financial support, guidance and technical assistance on 3D printing from Praxair Surface Technologies. We also acknowledge assistance from Benjamin Stegman and Bo Yang on SEM experiments and helpful discussions. Thank you Dr. Zhang for continuous support on the project.

The optimal laser parameters for printing Alloy 718 with yttria particles is a scan speed of 960 mm/s and laser power of 285 W, which can limit the presence of unmelted powders and agglomerated yttria particles.

Recommendations

- The team advises future studies to add nanosized yttria particles to Alloy 718 to improve the mechanical properties
- Apply a scan speed of 960 mm/s and laser power of 285 W for future 3D printing parameters to minimize defects

Reference

- W.C. Oliver, W.D. Nix. High temperature deformation of oxide dispersion strengthened al and Al-Mg solid solutions, Acta Metallurgica, Volume 30, Issue 7, 1982, Pages 1335-1347.
- 2. Praxair Surface Technologies. (2018). TruForm 718 Metal Powder. Praxair S.T. Technology, Inc.

MSE 430-440: Materials Processing and Design