A Ni-Cr-Mo-based, corrosion resistant superalloy produced by Haynes International occasionally fails

an intergranular pitting corrosion test, but the conditions for failure are currently unknown. By This work Is sponsored by Haynes

analyzing the measured alloy composition using a random forest model with a set of 20% test and 80% International, Kokomo, IN
training data, we were able to correctly predict passing or failing of the test dataset 79% of the time.
Using the model, we found that limiting the composition of two key trace elements below certain H A i ‘ q I EI,S
. 0 0 . . . .
thresholds_ reduced the rate of failure from 23% to 3%. Further analysis Is required to determine the International
mode of failure.
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