A Colloidal Approach to Liquid Crystal Transflective Displays: Making Your E-Reader Color

Chris Barony, John Epling, Cheng-Yu Hung, Matthew Michie, and Jerome Nash
Faculty Advisors: Professor Jeffrey Youngblood
Industrial Sponsors: Dr. Johnathan Vernon

Cholesteric liquid crystals (CLCs) structurally reflect light and have the potential to allow construction of transflective displays that can switch between transmitting light and selectively reflecting color. The Air Force Research Laboratory (AFRL) is interested in transflective displays as they work in reflected light and therefore have low power requirements. The goal of this project is to work towards creating a powder of CLCs where the flakes are monodisperse, have two aligned boundary conditions, have a thickness of 5 µm, and a length and width on the 10-50 µm size scale. This goal was addressed by attempting to create flakes either through a photopolymerization process or a replica molding method.

This work is sponsored by the Air Force Research Laboratory (AFRL) located in Dayton, OH

Project Background

Cholesteric Liquid Crystals (CLCs) self-assemble into a chiral nematic liquid crystal mesophase as shown on the right. Pitch length is defined as the length it takes to form the molecules to do a full rotation and represents the longest wavelength that the material can reflect [1].

Replica Molding Procedure

- Create master mold with positive imprint on top
- Cast PDMS onto top of mold to create a negative
- Remove PDMS from master mold
- Fill PDMS mold with solution of glassy CLC dissolved in toluene. Doctor blade of the excess so that the wells are filled
- Evaporate off the solvent and heat to the isotropic point
- Cover with glass slide and shear as it cools to create 20x40 µm flakes

Alignment can be encouraged by either directly rubbing the PDMS mold or adding a felt rubbed polyimide alignment layer.

Photopolymerization Procedure

- Batch out monomeric CLC with solvent to dilute the chiral dopant and control pitch (color)
- Heat CLC to isotropic point and infiltrate cells
- Evaporate off the solvent and heat to the isotropic point
- Cover with glass slide and shear as it cools to create 20x40 µm flakes
- Irradiate Sample with UV light to photopolymerize and lock in structure of flakes

Photopolymerization Results

The images of the sample shown above were taken at different angles. Taking a photograph from different angles changes the incidence angle of light and shortens the wavelength of light reflected. These images confirm that our samples are in fact Bragg mirrors. Shown on the left is an optical micrograph of the photomask used to create 20x40 µm flakes. The windows in the mask are spaced 100 µm apart to avoid light interference during polymerization.

Replica Molding Results

The above images show optical micrographs of a silicon master mold fabricated at Birck Nanotechnology Center. The image on the left shows the array of features and the image on the right displays a protruding flake positive.

Replica Molding Discussion

Birck Silicon Master Mold

The photolithography procedure detailed below was performed by Birck Nanotechnology Center. Birck however incorrectly spun-coat 1.7 µm of positive photoresist with 5 µm of titanium vapor deposition. This means that the photoresist was completely encapsulated by the titanium preventing proper liftoff. Due to time constraints efforts were focused on 3D printing.

Photopolymerization Discussion

Creating flakes with the photopolymerization method turned out to be much more difficult than originally anticipated. The recurring issues with this method are shown below:

- Overheating the monomeric CLC causing thermopolymerization when infiltrating the cell
- Judging the purity of CLC when boiling off acetone
- Batching CLC and solvent at the proper levels to redshift the color without turning infrared
- Finding the correct dosing time with the UV cure system

The first three issues were resolved, but finding the final dosing time was abandoned for focusing the group’s efforts on the more interesting (novel) developments on the replica molding portion of this project.

3D Printed Molds

A Formlabs Form 1+ 3D printer was used in conjunction with SolidWorks CAD files of the 3D molds at 400µm x 800µm, 200µm x 400µm, 100µm x 200 µm oval sized microflakes. Oval shaped flakes were used to optimize lateral printing resolution. Flakes were produced using monomeric and glassy CLCs. Difficulties included proper wettability of the CLC on the PDMS negative mold resulting in inadequate filling of the wells. Corona treatment surface additions and the addition of toluene were used to improve wettability.

References