Alejandro H. Strachan - Research

Novel computational techniques

Upscaling atomistic results to the macroscale. Thermodynamically accurate particle-based mesodynamics.
Upscaling atomistic results to the macroscale. Thermodynamically accurate particle-based mesodynamics.

Condensed matter chemistry

Condensed matter chemistry Image
Reactive molecular dynamics simulations of metastable intermolecular composites and energetic material.

Mechanical properties

Deformation and failure of metals, molecular crystals and ceramics.
Deformation and failure of metals, molecular crystals and ceramics.

Active materials

Ferroelectrics and shape memory materials. Computational design of nano-devices.
Ferroelectrics and shape memory materials. Computational design of nano-devices.

Journal Publications (* indicates postdoc author, + indicates student author, # indicates undersgraduate student author)

1. “Thermal Transport in SiGe Superlattice Thin Films and Nanowires: Effects of Specimen and Periodic Lengths”, Keng-Hua Lin and Alejandro Strachan, Physical Review B (in press).
2. “Lectures and Simulation Laboratories to Improve Learners’ Conceptual Understanding”, Alejandra Magana, Sean Brophy and Alejandro Strachan, Advances in Engineering Education (in press).
3. “Shape memory metamaterials with tunable thermo-mechanical response via hetero-epitaxial integration”, K. Guda Vishnu and A. Strachan, Journal of Applied Physics (accepted with minor modifications).
4. “Molecular dynamics simulation of PMMA slabs”,Y-J Kim, K-H Lin and A. Strachan, Modelling and Simulation in Materials Science and Engineering (submitted).
5. “Functional uncertainty quantification for error estimation and minimization via optimal high-fidelity simulations”, A. Strachan, S. Mahadevan, V. Hombal, Modelling and Simulation in Materials Science and Engineering (submitted).
6. “Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics” Ya Zhou and Alejandro Strachan, Journal of Chemical Physics (submitted).
7. “Modeling Amorphous polymers at nanoHUB.org”, Benjamin P. Haley, Chunyu Li, Nathaniel Wilson1, Eugenio Jaramillo, Alejandro Strachan, Computer Physics Communications (submitted).
8. “Molecular dynamics simulations on cyclic deformation of an epoxy thermoset”, C. Li,* E. Jaramillo, and A. Strachan, Polymer, 54, 881-890 (2013). DOI: 10.1016/j.polymer.2012.12.007
9. “Molecular dynamics study of dynamical contact between a nanoscale tip and substrate for AFM experiment”, Hojin Kim,* Gabriella Venturini and Alejandro Strachan, Journal of Applied Physics, 112, 094325 (2012). DOI: 10.1063/1.4762016
10. “Atomistic Simulations on Multilayer Graphene Reinforced Epoxy Composites”, Chunyu Li, Andrea Browning, Stephen Christensen and Alejandro Strachan, Composites Part A,43, 1293-1300 (2012). DOI: 10.1016/j.compositesa.2012.02.015
11. “Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica”, Nathan L. Anderson, Ravi Pramod Vedula, Peter A. Schultz, R. M. Van Ginhoven, and Alejandro Strachan, Applied Physics Letters, 100, 172908: 1-3 (2012). DOI: 10.1063/1.4707340
12. Effect of topological disorder on structural, mechanical, and electronic properties of amorphous silicon nitride: An atomistic study, Ravi Pramod Vedula, Nathan Anderson, and
Alejandro Strachan, Physical Review B, 85, 205209 (2012). DOI:
10.1103/PhysRevB.85.205209
13. “High-energy amorphous intermolecular reactive composites” Karthik Guda Vishnu, Mathew Cherukara, Hojin Kim and Alejandro Strachan, Physical Review B, 85, 184206 (2012). DOI: 10.1103/PhysRevB.85.184206
14. “Estimating in-plane Young’s modulus of polycrystalline films in MEMS”, Patrick R. Cantwell, Hojin Kim, Matthew M. Schneider, Hao-Han Hsu, Dmitrios Peroulis, Eric A. Stach, Alejandro Strachan, Journal of Microelectromechanical Systems, 21, 840-849 (2012). DOI: 10.1109/JMEMS.2012.2191939
15. “Molecular Dynamics Simulations and Experimental Studies of the Thermomechanical Response of an Epoxy Thermoset Polymer”, Chunyu Li, Grigori Medvedev, Eun-Woong Lee, Jaewoo Kim, James Caruthers, Alejandro Strachan, Polymer, 53, 4222-4230 (2012). DOI: 10.1016/j.polymer.2012.07.026
16. “Tailored Reactivity of Ni+A1 Nanocomposites: Microstructural Correlations”, Khachatur Manukyan, Aaron Mason, Lori Groven, Ya-Cheng Lin, Mathew Cherukara, Steven Son, Alejandro Strachan , Alexander Mukasyan, The Journal of Physical Chemistry C, 116, 21027-21038 (2012). DOI: 10.1021/jp303407e
17. “Role of nanostructure on reaction and transport in Ni/Al intermolecular reactive composites”, Mathew Cherukara, Karthik Guda Vishnu, Alejandro Strachan, Physical Review B, 86, 075470 (2012). DOI: 10.1103/PhysRevB.86.075470
18. “Size effects in NiTi from density functional theory calculations”, Karthik Guda Vishnu and Alejandro Strachan, Physical Review B 85, 014114 (2012). DOI: 10.1103/PhysRevB.85.014114
19. “Energy-based yield criterion for PMMA from large-scale MD simulations”, Eugenio Jaramillo, Nathaniel Wilson, Stephen Christensen, Jonathan Gosse, and Alejandro Strachan, Physical Review B, 85, 024114 (2012). DOI: 10.1103/PhysRevB.85.024114
20. "Effect of thickness on the thermo-mechanical response of free-standing thermoset nanofilms from molecular dynamics", Chunyu Li and Strachan, Alejandro, Macromolecules, 44, 9448–9454 (2011). DOI: 10.1021/ma201927n
21. “Strain engineering via amorphization and recrystallization in Si/Ge heterostructures”, Yumi Park and Alejandro Strachan, Physical Review B 84, 125412 (2011). DOI: 10.1103/PhysRevB.84.125412
22. “Uncertainty propagation in a multiscale model of single crystal plasticity”, M. Koslowski and A. Strachan, Reliability Engineering and System Safety 96, 1161-1170, (2011). DOI: 10.1016/j.ress.2010.11.011
23. “Role of surface orientation on ALD Al2O3/GaAs interface structure and Fermi level pinning: a DFT study”, Ganesh Hegde, Gerhard Klimeck, and Alejandro Strachan, Applied Physics Letters, 99, 093508 (2011). DOI: 10.1063/1.3624897
24. “Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA” Chunyu Li and Alejandro Strachan, Polymer 52, 2920-2928 (2011). DOI: 10.1016/j.polymer.2011.04.041
25. “First-Principles Investigation of Low Energy E' Center Precursors in Amorphous Silica” Nathan L. Anderson, Ravi Pramod Vedula, Peter A. Schultz, R.M. Van Ginhoven, and Alejandro Strachan, Physical Review Letters, 106, 206402 (2011). DOI: 10.1103/PhysRevLett.106.206402
26. “Thermal decomposition of condensed-phase nitromethane from molecular dynamics using the reactive force field ReaxFF”, Si-ping Han, Adri C. T. van Duin, William A. Goddard, III,
and Alejandro Strachan, Journal of Physical Chemistry B, 115, 6534-6540 (2011). DOI:
10.1021/jp1104054
27. “Effect of core energy on mobility in a continuum dislocation model”, Dong Wook Lee, Hojin Kim, Alejandro Strachan, and Marisol Koslowski, Phys. Rev. B 83, 104101 (2011). DOI: 10.1103/PhysRevB.83.104101
28. “Molecular dynamics characterization of the contact between clean metallic surfaces with nanoscale asperities”, H. Kim and A. Strachan, Physical Review B 83, 024108 (2011). DOI: 10.1103/PhysRevB.83.024108
29. “Molecular Simulations of Cross-linking Process of Thermosetting Polymers”, C. Li and A. Strachan, Polymer 51, 6058-6070 (2010). DOI: 10.1016/j.polymer.2010.10.033
30. “Molecular Dynamics Simulations of Strain Engineering and Thermal Transport in Nanostructured Materials”, Y. Park, Y. Zhou, J. Jhaveri, and A. Strachan, Computing In Science & Engineering 12 36-42 (2010). DOI: 10.1109/MCSE.2010.44
31. “Cyber-Enabled Simulations in Nanoscale Science and Engineering INTRODUCTION”, Strachan A, Klimeck G, Lundstrom M, Computing In Science & Engineering, 12 12-17 (2010). DOI: 10.1109/MCSE.2010.38
32. “Nanoscale metal-metal contact physics from molecular dynamics: the strongest contact size”, H. Kim and A. Strachan, Physical Review Letters 104, 215504 (2010). DOI: 10.1103/PhysRevLett.104.215504
33. “Phase stability and transformations in NiTi from density functional theory calculations”, K. Guda Vishnu and A. Strachan, Acta Materialia, 58, 745–752 (2010). 1st Tier. DOI: 10.1016/j.actamat.2009.09.019
34. “Size effects on martensitic microstructure in Zr nanowires via molecular dynamics”, A. Thompson and A. Strachan, Physical Review B, 81 085429 (2010). DOI: 10.1103/PhysRevB.81.085429
35. “Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for MD simulations”, Y. Zhou and A. Strachan, Journal of Chemical Physics 131 234113 (2009). 1st Tier. DOI: 10.1063/1.3272028
36. “Strain relaxation in Si/Ge/Si nanoscale bars from molecular dynamics simulations”, Y Park, M. Aktuga, A. Grama and A. Strachan, Journal of Applied Physics, 106, 034304-1-6 (2009). DOI: 10.1063/1.3168424
37. “Coarse grain modeling of spall failure in molecular crystals: role of intra-molecular degrees of freedom” K. Lynch,* A. Thompson, and A. Strachan, Modeling and Simulation in Materials Science and Engineering, 17, 015007-1-13 (2009). DOI: 10.1088/0965-0393/17/1/015007
38. “Structures and energetics of silicon nanotubes from molecular dynamics and density functional theory”, A. Palaria,G. Klimeck, and A. Strachan, Physical Review B, 78, 205315-1-5 (2008). DOI: 10.1103/PhysRevB.78.205315
39. “Phonon Thermal Conductivity in Nanolaminated Composite Metals via Molecular Dynamic”, Y. Zhou, B. Anglin, and A. Strachan, Journal of Chemical Physics, 127, 184702-1-11 (2007). DOI: 10.1063/1.2802366
40. “Melting and alloying of Ni/Al nanolaminates induced by shock loading: A molecular dynamics simulation study”, S. Zhao, T. C. Germann, and A. Strachan, Physical Review B, 76, 104105-1-5 (2007). DOI: 10.1103/PhysRevB.76.104105
41. “Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading”, S. Zhao, T. C. Germann, and A. Strachan, Physical Review B, 76, 014103-1-6 (2007). DOI: 10.1103/PhysRevB.76.014103
42. “Atomic-Level View of Inelastic Deformation in a Molecular Crystal”, E. Jaramillo, T. D. Sewell, and A. Strachan, Physical Review B, 76, 064112-1-6 (2007). DOI: 10.1103/PhysRevB.76.064112
43. “Heteroepitaxial integration of metallic nanowires: transition from coherent to defective interfaces via molecular dynamics”, A. Arumbakkam, E. Davidson, and A. Strachan, Nanotechnology, 18, 345705-1-7 (2007). DOI: 10.1088/0957-4484/18/34/345705
44. “Molecular dynamics characterization of the response of Ni/Al nanolaminates under dynamical loading”, S. Zhao, Timothy C. Germann, and Alejandro Strachan, Journal of Propulsion and Power, 23, 693-697 (2007). DOI: 10.2514/1.25727
45. “Reply to "Comment on 'Melting dynamics of superheated argon: Nucleation and growth'"”, S-N. Luo, L. Zheng, A. Strachan, D. Swift, Journal of Chemical Physics, 126, 187102 (2007). DOI: 10.1063/1.2732744
46. “Melting dynamics of superheated argon: Nucleation and growth”, S-N. Luo, L. Zheng, A. Strachan, D. Swift, Journal of Chemical Physics, 126, 34505-1-7 (2007). DOI: 10.1063/1.2424715
47. “Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates”, S. Zhao, T. C. Germann, and A. Strachan, Journal of Chemical Physics, 125, 164707-1-8 (2006). DOI: 10.1063/1.2359438
48. “Vibrational density of states and Lindemann melting law”, S-N. Luo, A. Strachan, D. Swift, Journal of Chemical Physics, 122, 194709-1-5 (2005). DOI: 10.1063/1.1902948
49. “Deducing Solid-liquid interfacial energy of H2O at 0-0.3 GPa deduced from supercooling experiments”, S-N. Luo, A. Strachan, D. Swift, Modelling and Simulation Materials Science and Engineering, 13, 321-328 (2005). DOI: 10.1088/0965-0393/13/3/002
50. “Large electrostrictive strain at Gigahertz frequencies in a PVDF nano-actuator: computational device design”, A. Strachan and W. A. Goddard, Applied Physics Letters, 86, 83103-1-3 (2005). DOI: 10.1063/1.1862343
51. “Thermal decomposition of RDX from reactive molecular dynamics”, A. Strachan, E. Kober, A. C. T. van Duin, J. Oxgaard, and W. A. Goddard, Journal of Chemical Physics, 122, 54502-1-10 (2005). DOI: 10.1063/1.1831277
52. “Energy exchange between mesoparticles and their internal degrees of freedom”, A. Strachan and B. L. Holian, Physical Review Letters, 94, 014301-1-4 (2005). DOI: 10.1103/PhysRevLett.94.014301
53. “Density functional theory and molecular dynamics studies of the energetics and kinetics of Electroactive polymers: PVDF and P(VDF-TrFE)”, H. Su, A. Strachan, and W. A. Goddard, III, Physical Review B, 70, 064101-1-8 (2004). DOI: 10.1103/PhysRevB.70.064101
54. “Properties of Asphaltenes Through Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Bulk Arabian Light Asphaltenes”, M. S. Diallo, A. Strachan, J. L. Faulon, and W. A. Goddard III , Petroleum Science and Technology, 22, 877-899 (2004). DOI: 10.1081/LFT-120040254
55. “Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum”, G. Wang, A. Strachan,* T. Cagin and W. A. Goddard III, Modelling and Simulation in Materials Science and Engineering, 12, S371-S389 (2004). DOI: 10.1088/0965-0393/12/4/S06
56. “First principles force field for metallic tantalum”, A. Strachan, T. Cagin, O. Gülseren, S. Mukherjee, R. E. Cohen and W. A. Goddard III, Modelling and Simulation in Materials Science Engineering, 12, S445-S459 (2004). DOI: 10.1088/0965-0393/12/4/S10
57. “Non-equilibrium melting and crystallization of a model Lennard-Jones System”, S-N. Luo, A. Strachan, D. Swift, Journal of Chemical Physics, 120, 11640-1-10 (2004). DOI: 10.1063/1.1755655
58. “Normal modes and frequencies from covariances in molecular dynamics or Monte Carlo simulations”, A. Strachan, Journal of Chemical Physics, 120, 1-4 (2004). DOI: 10.1063/1.1635364
59. “Atomistic simulations of kinks in 1/2a < 111 > screw dislocations in bcc tantalum”, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, Physical Review B, 68, 224101-1-15 (2003). DOI: 10.1103/PhysRevB.68.224101
60. “Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments”, S-N. Luo, T. Ahrens, T. Cagin, A. Strachan, W. A. Goddard, D. Swift, Physical Review B, 68, 134206-1-11 (2003). DOI: 10.1103/PhysRevB.68.134206
61. “Shock waves in high-energy materials: The initial chemical events in nitramine RDX”, A. Strachan, A. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard, Physical Review Letters, 91, 098301-1-4 (2003). DOI: 10.1103/PhysRevLett.91.098301
62. “Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum”, D. Segall, A. Strachan, W.A. Goddard, III, S. Ismail-Beigi, T. A. Arias, Physical Review B, 68, 014104-1-11 (2003). DOI: 10.1103/PhysRevB.68.014104
63. “ReaxFFSiO reactive force field for silicon and silicon oxide systems”, A. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard, III, Journal of Physical Chemistry A, 107, 3803-1-9 (2003). DOI: 10.1021/jp0276303
64. “Role of core polarization curvature of screw dislocations in determining the Peierls stress in bcc Ta: A criterion for designing high-performance materials”, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, Physical Review B, 67, 140101-1-4 (2003). DIO: 10.1103/PhysRevB.67.140101
65. “Molecular Dynamics Modeling of Stishovite”, S-N. Luo, T. Cagin, A. Strachan, W. A. Goddard, III and T. J. Ahrens, Earth and Planetary Science Letters, 202, 147-157 (2002). DOI: 10.1016/S0012-821X(02)00749-5
66. “Kinks in a/2<111> screw Dislocation in Ta”, Guofeng Wang, A. Strachan, T. Cagin and W. A. Goddard III, Journal of Computer Aided Materials Design, 8, 117-125 (2002). DOI: 10.1103/PhysRevB.68.224101
67. “A Multiscale Approach for Modeling Crystalline Solids” A. Cuitino, L. Stainier, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, III and M. Ortiz, Journal of Computer Aided Materials Design, 8, 127-149 (2002). DOI: 10.1023/A:1020012431230
68. “Crack propagation in a Tantalum nano-slab”, A. Strachan, T. Cagin and W. A. Goddard III, Journal of Computer Aided Materials Design, 8, 151-159 (2002). DOI: 10.1023/A:1020046914392
69. “Accurate Calculations of the Peierls Stress in Small Periodic Cells”, D. E. Segall, T. A. Arias, A. Strachan, and W. A. Goddard, III, Journal of Computer Aided Materials Design, 8, 161-172 (2002). DOI: 10.1023/A:1020001527113
70. “Ab-initio Studies of Pressure Induced Phase Transitions in BaO”, M. Uludogan, T. Cagin, A. Strachan, and W. A. Goddard, III, Journal of Computer Aided Materials Design, 8, 193-202 (2002). DOI: 10.1023/A:1020085006640
71. “Large scale atomistic simulations of screw dislocation structure, annihilation and cross-slip in FCC Ni”, Y. Qi, A. Strachan, T Cagin, and W. A. Goddard, III, Materials Science and Engineering A 309, Sp. Iss. SI, 156-159 (2001). DOI: 10.1016/S0921-5093(00)01716-0
72. “Molecular dynamics simulations of 1/2 a<111> screw dislocation in Ta”, G. Wang, A. Strachan, T Cagin, and W. A. Goddard, III, Materials Science and Engineering A, 309, Sp. Iss. SI, 133-137 (2001). DOI: 10.1016/S0921-5093(00)01739-1
73. Reply to "Comment on 'Phase diagram of MgO from density-functional theory and molecular-dynamics simulations' ", A. Strachan, T. Cagin, and W. A. Goddard, Physical Review B 63, 096102 (2001). DOI: 10.1103/PhysRevB.63.096102
74. “Critical behavior in spallation failure of metals”, A. Strachan, T. Cagin, and W. A. Goddard, III, Physical Review B, 63, 060103-1-4 (2001). DIO: 10.1103/PhysRevB.63.060103
75. “Phase diagram of MgO from density-functional theory and MD simulations”, A. Strachan, T. Cagin, and W. A. Goddard, Physical Review B, 60, 15084-15093 (1999). DOI: 10.1103/PhysRevB.60.15084
76. “Fragmentation of hot drops”, C. O. Dorso and A. Strachan, Computer Physics Communications 121, Sp. Iss. SI, 240-243 (1999). DOI: 10.1016/S0010-4655(99)00321-5
77. “Temperature and energy partition in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 59, 285-294 (1999). DOI: 10.1103/PhysRevC.59.285
78. “Caloric curve in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 58, R632-R636 (1998). DOI: 10.1103/PhysRevC.58.R632
79. “Statistical thermodynamics of cluster phase transitions” A. Strachan and C. O. Dorso, Physica A, 257, 526-529 (1998). DOI: 10.1016/S0378-4371(98)00187-3
80. “Time scales in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 55, 775-787 (1997). DOI: 10.1103/PhysRevC.55.775
81. “Fragment recognition in molecular dynamics”, A. Strachan and C. O. Dorso, Physical Review C, 56, 995-1001 (1997). DOI: 10.1103/PhysRevC.56.995
82. “Onset of fragment formation in periodic expanding Systems”, C. O. Dorso, A. Strachan, Physical Review B, 54, 236-243 (1996). DOI: 10.1103/PhysRevB.54.236

Refereed Conference Proceedings (* indicates postdoc author, + indicates graduate student author, # indicates undergraduate author)

1.    “Reactive force fields based on quantum mechanics for applications to materials at extreme conditions”, A.C.T. van Duin, S. V. Zybin, K. Chenoweth, L. Zhang, S-P. Han, Alejandro Strachan, and W. A. Goddard, AIP Conference Proceedings, 845, 581-1-4 (2006).
2.    “Molecular dynamics simulations of shock-induced chemical, mechanical, and thermal processes in Ni/Al nanolaminates” S. Zhao, T.C. Germann, Alejandro Strachan, A. AIP Conference Proceedings, 845, 593-1-4 (2006).
3.    “Initial chemical events in the energetic material rdx under shock loading: role of defects”, Alejandro Strachan, Adri C. T. van Duin, and W. A. Goddard, III, Shock Compression of Condensed Matter-2003, Proceedings of the APS Topical Group on Shock Compression of Condensed Matter, Vol. 706.
4.    “Properties of Asphaltenes Through Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Bulk Arabian Light Asphaltenes”, M. S. Diallo, A. Strachan, J. L. Faulon, and W. A. Goddard III , Petroleum Science and Technology., 22, 877 (2004).
5.    “The ReaxFF polarizable reactive force fields for molecular dynamics simulation of ferroelectrics”, W. A. Goddard, III, Qingsong Zhang; M. Uludogan, A. Strachan, T. Cagin, AIP Conference Proceedings, 626, 45-1-11 (2002). Conference: Fundamental Physics of Ferroelectrics 2002, 3-6 Feb. 2002, Washington, DC, USA.
6.    “Ab initio theory of plasticity”, Thomas A. Arias, Darren E. Segall, Alejandro Strachan and W. A. Goddard, III, in “Dislocations, Plasticity and metal forming”, Akhtar S. Kahn, Rehan Kazmi, Jianqiu Zhou, (Eds) Neat Press, Fulton Maryland (2003).
7.    “A Multiscale Approach for Modeling Crystalline Solids” A. Cuitino, L. Stainier, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, III and M. Ortiz, J. Comp. Aid. Mat. Design, 8, 127-1-23 (2002).
8.    “Kinks in a/2<111> screw Dislocation in Ta”, Guofeng Wang, Alejandro Strachan, Tahir Cagin and William A. Goddard III, J. Comp. Aid. Mat. Design, 8, 117-1-9 (2002).
9.    Crack propagation in a Tantalum nano-slab, Alejandro Strachan, Tahir Cagin and William A. Goddard III, J. Comp. Aid. Mat. Design, 8, 151-1-9 (2002).
10.    “Ab-initio Studies of Pressure Induced Phase Transitions in BaO”, M. Uludogan, Tahir Cagin, Alejandro Strachan, and W. A. Goddard, III, J. Comp. Aid. Mat. Design, 8, 193-1-10 (2002).
11.    “Accurate Calculations of the Peierls Stress in Small Periodic Cells”, D. E. Segall, T. A. Arias, Alejandro Strachan, and William A. Goddard, III, J. Comp. Aid. Mat. Design, 8, 161-1-12 (2002).
12.    “Molecular dynamics simulations of 1/2 a<111> screw dislocation in Ta”, G. Wang, A. Strachan, T Cagin, and W. A. Goddard, III, Mat. Sci. Eng. A, 309, 133-1-5 (2001). Conference: Dislocations 2000: An International Conference on the Fundamentals of Plastic Deformation, 19-22 June 2000, Gaithersburg, MD, USA.
13.    “Large scale atomistic simulations of screw dislocation structure, annihilation and cross-slip in FCC Ni”, Y. Qi, A. Strachan, T Cagin, and W. A. Goddard, III, Mat. Sci. Eng. A 309, 156-1-4 (2001). Conference: Dislocations 2000: An International Conference on the Fundamentals of Plastic Deformation, 19-22 June 2000, Gaithersburg, MD, USA.
14.    “Fragmentation of hot drops”, C. O. Dorso and A. Strachan, Comput. Phys. Commun. 122, 240-1-4 (1999). Conference: Europhysics Conference on Computational Physics (CCP 98); September 2-5, 1998; GRANADA, SPAIN.
15.    “Statistical thermodynamics of cluster phase transitions”,  A. Strachan y C. O. Dorso, Physica A, 257, 526-1-4 (1998). Conference: Statistical Physics of Dynamic and Complex Systems. 5th Latin American Workshop on Non-Linear Phenomena and the 11th MEDYFINOL Conference on Statistical Physics of Dynamic and Complex Systems, 28 Sept.-3 Oct. 1997, Canela, Brazil.
16.    “Fragment formation in finite and infinite expanding systems”, C. O. Dorso and A. Strachan, Rev. Mex. Fis. 41, 96 (1995).

Other Publications

1.    “First principles-based modeling of ferroelectric polymers: computational design of a pvdf-based nano-actuator”, Alejandro Strachan, H. Su, and W. A. Goddard, Proceedings of the 3rd International Conference ``Computational Modeling and Simulation of Materials'', Acireale, Sicily, Italy May 30-June 4, 2004.
2.    “Reactive classical potentials applied to detonation studies: phenomenology and predictivity”, Jean-Bernard Maillet, L. Soulard, T. C. Germann, Alejandro Strachan, and A. C.T. van Duin, Proceedings of the 3rd International Conference ``Computational Modeling and Simulation of Materials'', Acireale, Sicily, Italy May 30-June 4, 2004.