Rolling Contact Fatigue

The rolling motion between the rolling elements and raceway produces complex, localized, alternating contact stresses within the material

 Principal stress directions continually change as contact passes over the material

Mechanical Engineering Tribology Laboratory (METL)

October 4, 2023

Analytical Modeling Approach:

Continuum Damage Mechanics – *Damage Rate Equation(s)*

Elastic linear kinematic plastic Model

σ _{Sy}	M = 10-100 GPa E = 210 GPa							
Stress-strain curve for ELKP material.								
	Parameter	Value						
Ν	laterial grain diameter	10µm						
Und	amaged Elastic Modulus	210GPa						
	Poisson's Ratio	0.3						
	σ _r	5.97GPa						
	m	11.1						
q ((M=10GPa & 100GPa)	3.97						
	S ₀ (M= 10GPa)	86 MPa						

0.96 0.90 0.75			
0.50			
0.25			
0.10	1	1	ļ
0.05	ŀ	+	
0.02 - * *	1	0	1 GPa 1.5 GPa
		0	2 GPa
).01 -		\$	3.5 GPa(M=10) 3.5 GPa(M=100)
**************************************			man record record

Hert Pres	zian sure	3.5 GPa M=100 GPa	3.5 GPa M= 10GPa	2 GPa	1.5 GPa	1 GPa
L ₁₀	lives	0.8e ⁵	1.7e ⁵	6.2 <i>e</i> ⁸	3.3e ¹⁰	3.4e ¹²

Cased Carburized Steel

- Machine components such as bearings, cams, etc. are commonly made from cased carburized steels and subject to RCF
- Heat treatments during case carburization introduce residual stresses (RS) in the material
- Retained austenite transformation is accompanied by volume expansion inducing residual stresses
- Compressive residual stresses improves fatigue resistance & life

Evolution of RS due to RA transformation

2