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a b s t r a c t

This paper proposes new techniques to calculate the dynamic gains of nonlinear systems represented by
fuzzy basis function network (FBFN) models. The dynamic gain of an FBFN can be approximated by
finding the maximum of norm values of the locally linearized systems or by solving a non-smooth
optimal control problem. From the proposed gain calculation techniques, a novel adaptive multilevel
fuzzy controller (AMLFC) with a maximum output scaling factor is presented. To guarantee the system
stability, a stability condition is derived, which only requires that the output scaling factor of the AMLFC
be bounded. Therefore, this paper provides a systematic and simple design practice for controlling
nonlinear systems by using an AMLFC. The AMLFC is simulated in a tower crane control system.
Simulation results show that AMLFC is not only robust but also provides improved transient
performances compared with the robust adaptive fuzzy controller.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy controllers are constructed based on heuristic rules and “expert knowledge” derived from physical systems. Early fuzzy control
papers did not provide mathematical stability analysis or proofs of the control systems (Sala, 2013). However, the stability of a fuzzy
control system is very important in the controller design process to guarantee desired performance and safety in the plant operations.

The applications of the small gain theorem (Jiang et al., 2010; Yang, 2005) and the passivity theory (Xu and Shin, 2005) in fuzzy control
systems show great advantages compared to other stability methods. These stability theories do not require an exact mathematical
representation of the plant and, therefore, they can be applied to nonlinear systems with unknown mathematical models. With the small
gain theorem, Chen and Ying (1993) demonstrated how the parameters of a proportional-integral (PI) fuzzy controller could be chosen to
ensure the input-output stability of a nonlinear system. However, the stability criteria developed are only limited to a certain type of fuzzy
controllers with two input and three output membership functions. Since Chen and Ying (1993) divided the stability problem according to
the locations of the error and the time rate of change of the error with respect to zero, the complexity of the problemwould exponentially
increase if the number of input and output membership functions increases. In the current work, the stability analysis is conducted based
on the location of the error and the time rate of change of the error with respect to the activated membership functions. The results,
therefore, can be applied to fuzzy controllers with any number of input and output membership-functions.

Since mathematical models for nonlinear systems cannot always be easily obtained, fuzzy basis function network (FBFN) models were
adopted in many applications (Chiang et al., 2012; Lee and Shin, 2001; Leng et al., 2005) to represent the relationship between the inputs
and outputs of the systems. With a set of input and output data, Wang and Mendel (1992) showed that any nonlinear system can be
approximated by an FBFN model. However, controllers implemented with FBFN models are still limited, owing to a lack of stability
analysis. Due to the nonlinearity characteristics of the FBFN, the small gain theorem is the most appropriate approach to finding the
stability region in this case. Therefore, obtaining the dynamic gain from an FBFN model is the first step towards achieving the stability
condition for nonlinear fuzzy control systems.
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In many applications where heuristic information for designing a fuzzy controller is not sufficient, the parameters of a fuzzy controller
can be computed offline by using input and output data (Chen et al., 2009; Lin and Xu, 2006; Mingzhi et al., 2009). Ying (1994) introduced
a method for obtaining the parameters of a PI fuzzy controller by tuning a linear PI controller. However, the global stability of the control
system could not be guaranteed, since Ying's method only showed local stability around the equilibrium points, nor could it determine the
size of the region of local stability. When there are disturbances and time-varying parameters, online adaptation of control parameters
based on data gathered in real-time would be more effective. Li and Tong (2003) proposed a hybrid control system, which consists of a
state observer, an adaptive fuzzy mechanism, an H1 control and a sliding mode control. Boubakir et al. (2011) used a different approach to
tune the parameters of a proportional-integral-derivative (PID) controller for multi-input multi-output (MIMO) dynamic systems by
minimizing the error between an ideal controller and the PID controller. However, the controllers developed by both Li and Tong (2003)
and Boubakir et al. (2011) can only be applied to a certain class of nonlinear dynamic systems where the input is represented by a linear
term in the system's mathematical model. Pellegrinetti and Bentsman (1996) offer an example of nonlinear systems that cannot be
represented in this form. Furthermore, stability conditions for the controllers presented in these papers must be calculated based on the
upper bounds of the model functions. These values are difficult to obtain in many cases where the system models are unknown. In the
current work, since an FBFN is used as a representation of nonlinear systems, the stability condition depends only on the dynamic gain
that can be computed directly from the FBFN's parameters.

Different studies have been conducted to improve the performance of fuzzy controllers. Haj-Ali and Ying (2004) and Arya (2007) have
analyzed the structures of PI fuzzy controllers and found the effects of nonlinear and asymmetrical input sets on the performance of the
controllers. Chen and Ying (1993) and Haj-Ali and Ying (2004) demonstrated that fuzzy PI and PID controllers could be treated as
nonlinear PI and PID controllers. Mudi and Pal (1999) presented a method to tune the output-scaling factors of fuzzy controllers by using
the error and the time rate of change of the error signals. However, this method is based only on an intuitive analysis of the desired
performances to keep the system stable; no mathematical stability analysis was provided in their work. In Woo et al. (2000), a PID fuzzy
controller was proposed with self-tuning algorithms for both input and output scaling factors, but lacked a systematic stability analysis.
The multilevel fuzzy controller (MLFC) system was proposed by Xu and Shin (2005), wherein the controller has an adaptive mechanism
designed to tune the output membership functions based on the system outputs. Although the MLFC has been successfully utilized in
different applications (Davis et al., 2011; Ngo and Shin, 2012), the controller still has some limits when dealing with time-variant systems
such as sectorial restrictions on membership functions.

The current work proposes a novel method to estimate the dynamic gain of a nonlinear system and discusses the design process for a
newMLFC with an adaptive mechanism for the output scaling factor. The design can improve the transient performance of control systems
while eliminating the need for initial parameter tuning. The stability analysis is conducted based on the small gain theorem and uses the
dynamic gain of the nonlinear system to provide the maximum bound of the MLFC's output scaling factor for system stability.

2. Dynamic gain estimation of nonlinear dynamic systems modeled by FBFNs

The stability analysis of a nonlinear fuzzy control system based on the small gain theorem requires an estimation of the dynamic gain of
the plant. Two methods are provided in this section to calculate the gain of an FBFN system. In the first method, the dynamic gain can be
approximated by finding the maximum of the norm values of the locally linearized systems. This method provides an effective technique
for FBFN models with a large number of fuzzy rules, since the estimation can be done based on experimental data. The second method
provides an analytical computation technique of the dynamic gain based on a non-smooth optimal control problem. To simplify
mathematical analysis, only nonlinear systems with single input and single output (SISO) are considered in this paper. However, the
technique can be easily expanded to MIMO systems by applying the same procedure for each individual input and output pair.

2.1. Local linear model of a nonlinear systems represented by FBFNs

This subsection provides a method for obtaining the local linear model of a nonlinear system from its FBFN model. For a SISO nonlinear
system, an FBFN model can be constructed from the input and output data through a set ofl fuzzy rules, where the ith rule Ri is described
as following:

Ri : If uðk�1Þ ¼ Ai
1 AND uðk�2Þ ¼ Ai

2 AND …AND uðk�mÞ ¼ Ai
m AND

yðk�1Þ ¼ Bi
1 AND yðk�2Þ ¼ Bi

2 ⋯AND yðk�nÞ ¼ Bi
n

then yðkÞ ¼ bi
ð1Þ

where u(k) is the input and y(k) denotes the output of the nonlinear system at time instance k, m and n represent the system orders of the
input and the output,

A1…Am and B1…Bn are fuzzy membership sets, and
b represents a singleton function of the output.
Assume that the output of the FBFN model at initial condition is zero, by using singleton fuzzification, product inference and centroid

defuzzification methods, the FBFN model can be represented by the following state space equations:

xðkÞ ¼ fðxðk�1Þ;uðk�1ÞÞ

yðkÞ ¼ cTxðkÞ ð2Þ

where

xðkÞ ¼ yðkÞ;…yðk�nþ1Þ� �T
; uðkÞ ¼ uðkÞ;…;uðk�mþ1Þ� �T

; xð0Þ ¼ 0; 0; :::;0½ �T ; ð3Þ
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fðxðk�1Þ;uðk�1ÞÞ ¼

f ðxðk�1Þ;uðk�1ÞÞ
yðk�1Þ

⋮
yðk�nþ1Þ

2
66664

3
77775; c¼ ½1;0;…0�T ð4Þ

The nonlinear mapping f : u�ℜm; x�ℜn-y�ℜ in Eq. (4) is described through the fuzzification process as follows:

f x;uð Þ ¼

Pl
i ¼ 1

bi U ∏
m

tu ¼ 1
μAi

tu
½uðk�tuÞ�

( )
U ∏

n

ty ¼ 1
μBity

½yðk�tyÞ�
( ) !

Pl
i ¼ 1

∏
m

tu ¼ 1
μAi

tu
½uðk�tuÞ�

( )
U ∏

n

ty ¼ 1
μBi

ty
½yðk�tyÞ�

( ) ! ; ð5Þ

where μAi
tu
½uðk�tuÞ� and μAi

ty
½yðk�tyÞ� are input and output membership functions represented by:

μAi
tu
½uðk�tuÞ� ¼ exp �1

2
uðk�tuÞ�mi

tu

σi
tu

" #28<
:

9=
;; μAi

ty
½yðk�tyÞ� ¼ exp �1

2

uðk�tyÞ�mi
ty

σi
ty

" #28<
:

9=
; ð6Þ

mi
t and σ

i
t are real-valued parameters that represent the center and width of each Gaussian MF; tu ¼ 1:::m and ty ¼ 1:::n are the numbers of

delay terms of the system input and output, respectively; and l is the number of the FBFN's rules.
When the states of the system are around a certain trajectory described by x0 and u0:

x0ðk�1Þ ¼ y0ðk�1Þ;…; y0ðk�nÞ� �
; u0ðk�1Þ ¼ u0ðk�1Þ;…;u0ðk�mÞ� �

x0ðkÞ ¼ fðx0ðk�1Þ;u0ðk�1ÞÞ; x0ð0Þ ¼ ½0; 0; :::;0�T ð7Þ
the time-varying linear model of the nonlinear system respresented by Eq. (2) can be obtained as follows:

xðkÞ ¼ f x0ðk�1Þ;u0ðk�1Þð ÞþA x0ðk�1Þ;u0ðk�1Þð Þ xðk�1Þ�x0ðk�1Þ� �
þB x0ðk�1Þ;u0ðk�1Þð Þ uðk�1Þ�u0ðk�1Þ� �

yðkÞ ¼ cTxðkÞ ð8Þ
where

A x0;u0ð Þ ¼

a1 a2 … an
0 1 … 0
⋮
0 0 … 1

2
6664

3
7775; B x0;u0ð Þ ¼

b1 b2 … bm
0 1 … 0
⋮
0 0 … 1

2
6664

3
7775; xð0Þ ¼ ½0; 0; :::;0�T ð9Þ

The matrices A and B are constructed from the linearizing coefficients aty and btu (ty ¼ 1:::n and tu ¼ 1:::m), which can be calculated by
the following formulas (Xu and Shin, 2011):

aty ¼ ∂f
∂yðk� tyÞ

x¼ x0;u¼ u0

¼ �
∑
l

i ¼ 1
bi⋅ ∏

m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �" #

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �" #

yðk�tyÞ�city
ðσity Þ2

" #( )

∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �( )" #

����������

þ
∑
l

i ¼ 1
bi⋅ ∏

m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �" #

⋅ ∏
n

ty ¼ 1
μBity

yðk�tyÞ
� �" #( )

⋅ ∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBity

yðk�tyÞ
� �( )

yðk�tyÞ�city
ðσity Þ2

" #( )( )

∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �( )" #( )2 ð10Þ

and

btu ¼ ∂f
∂uðk� tuÞ

x¼ x0;u¼ u0

¼ �
∑
l

i ¼ 1
bi⋅ ∏

m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �" #

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �" #

uðk�tuÞ�citu
ðσitu Þ2

" #( )

∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �( )" #

����������

þ
∑
l

i ¼ 1
bi⋅ ∏

m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �" #

⋅ ∏
n

ty ¼ 1
μBity

yðk�tyÞ
� �" #( )

⋅ ∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBity

yðk�tyÞ
� �( )

uðk�tuÞ�citu
ðσitu Þ2

" #( )( )

∑
l

i ¼ 1
∏
m

tu ¼ 1
μAi

tu
uðk�tuÞ
� �( )

⋅ ∏
n

ty ¼ 1
μBi

ty
yðk�tyÞ
� �( )" #( )2 ð11Þ

By changing the variables, Eq. (8) becomes

~xðkÞ ¼ A x0;u0ð Þ ~xðk�1ÞþB x0;u0ð Þ ~uðk�1Þ
~yðkÞ ¼ cT ~xðkÞ ð12Þ
where ~xðkÞ ¼ xðkÞ�x0ðkÞ, ~uðkÞ ¼ uðkÞ�u0ðkÞ, ~yðkÞ ¼ yðkÞ�y0ðkÞ, ~xð0Þ ¼ 0.
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Since an FBFN is a nonlinear system, the following theorem (Nikolaou and Manousiouthakis, 1989) was used in this work to calculate
the dynamic gain:

Let N : uALmpe-yALnpe be an unbiased operator and Lu0 be its linearization around the trajectory u0. Let W be a convex subset of Lmp . The
notations Lnp and Lnpe are defined as the finite p-norm (Banach) space and the extended Banach space, given by:

Lnp ¼ x : ½0;∞Þ→Rn : ∥x∥po∞
� �

Lnpe ¼ x : ½0;∞Þ→Rn : xT∈Lnp for all T≥0
n o

ð13Þ

where the truncated signal xT is defined as follows:

xT : t-xT ðtÞ ¼
xðtÞ iftrT

0 ift4T

�
; ð14Þ

Then, the dynamic gain of N can be calculated from the maximum value of the gains of its linearization L (Nikolaou and Manousiouthakis,
1989):

∥N∥pW ¼ sup
u1;u2∈W
u1≠u2

∥Nðu1Þ�Nðu2Þ∥p
∥u1�u2∥p

¼ sup
u0∈W

∥Lu0∥p; p∈ 1;∞½ � ð15Þ

Based on the obtained models, two methods to estimate the L2 gain and L1 gain of FBFN systems are provided in the next subsections.

2.2. L2 gain estimation of nonlinear systems represented by FBFN models

It has been proven by Schaft (1992) that, if the local linear model of a nonlinear system has its L2 gains less than a constant γ, then the
local L2 gain of the nonlinear systemwill also be less than γ. Since the L2 gain of a linear system is also its H1 norm, the L2 gain of the FBFN
can be approximated by finding the maximum of the H1 norm values of all locally linearized systems:

∥N∥2W ¼ sup
u0∈W

∥Lu0∥H∞ ð16Þ

The local linear systems Luo are provided in the form of state space equations as given in Eq. (8). Fast computing techniques such as
Bruinsma and Steinbuch (1990) can be used to calculate the values of their H1 norm.

2.3. L∞ gain estimation of nonlinear systems represented by FBFN models

This subsection provides an analytical computation of the L∞ gain for discrete nonlinear systems and FBFN models. This work is an
expansion of Nikolaou and Manousiouthakis' (1987) techniques, which is only applied to continuous nonlinear systems. In Theorem 1, the
L∞ gain of an FBFN is proven to be the solution of a non-smooth optimal control problem, which can be solved numerically by using the
non-smooth Newton's method (Gerdts, 2008).

Theorem 1. (Dynamic infinity gain of FBFN systems):

The dynamic infinity gain of a nonlinear system represented by an FBFN model, which is described by Eq. (2), over a convex set
W9 u∈L∞ : ∥uðkÞ∥≤δ� �

can be found by solving the following non-smooth optimal control problem:

∥N∥Δ∞W ¼ sup
k∈ð0;∞Þ

� inf
u0∈W

∑
k�1

l ¼ 0
�‖cTΦðk; lþ1ÞB‖i

" #
ð17Þ

under the dynamic constraints:

Φðkþ1; lÞ ¼ AΦðk; lÞ
Φ : ð0;∞Þ � ½0;∞Þ→ℝn�n; Φðk; kÞ ¼ I

ð18Þ

where A and B are the coefficient matrices given in Eq. (9). ∥⋅∥i represents any induced norm.
Proof: For a system represented by Eq. (12), the unique solution can be found as follows (Dahleh and Verghese, 2011):

~xðkÞ ¼Φðk;0Þ ~xð0Þþ
Xk�1

l ¼ 0

Φðk; lþ1ÞBðlÞ ~uðlÞ

~yðkÞ ¼ cT ~xðkÞ; ð19Þ
where the state transition matrix Φðk; lÞ relates the state at time k to the state at an earlier time l:

~xðkÞ ¼Φðk; lÞ ~xðlÞ ð20Þ
and has the following properties:

Φðk; kÞ ¼ I
~xðkÞ ¼Φðk;0Þ ~xð0Þ
Φðkþ1; lÞ ¼ AðkÞΦðk; lÞ ð21Þ

From Eqs. (2) and (19), the output of the system can be calculated from its solution:

~yðkÞ ¼
Xk�1

l ¼ 0

cTΦðk; lþ1ÞBðlÞ ~uðlÞ ð22Þ
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Eq. (22) can be rewritten as follows:

~yðkÞ ¼
Xk�1

l ¼ 0

GlðkÞ ~uðlÞ ð23Þ

where GlðkÞ ¼ cTΦðk; lþ1ÞBðlÞ. It has been proven by Desoer and Vidyasagar (1975) that, if a time-varying linear system has the responses
as provided in Eq. (23), then its L∞ gain is given as follows:

‖L‖1 ¼ sup
kA ð0;1Þ

Xk�1

l ¼ 0

‖GlðkÞ‖i ð24Þ

where ‖GlðkÞ‖i is any induced norm of GlðkÞ.
By using Eqs. (15) and (24), the infinity gain of the nonlinear system represented by an FBFN model becomes the solution of the

following non-smooth optimal control problem:

∥N∥∞W ¼ sup
u0∈W

∥Lu0∥∞ ¼ sup
u0∈W

sup
k∈ð0;∞Þ

∑
k�1

l ¼ 0
‖cTΦðk; lþ1ÞBðlÞ‖i

" #
¼ sup

k∈ð0;∞Þ
� inf

u0∈W
∑
k�1

l ¼ 0
�‖cTΦðk; lþ1ÞBðlÞ‖i

" #
ð25Þ

3. Design a stable MLFC with an adaptive output scaling factor

In this section, the novel MLFC with an adaptive output scaling factor (AMLFC) is proposed with three layers. The first layer acts as a
conventional fuzzy controller while the second and third layers are used to tune the output scaling factor of the first layer.

Fig. 1 describes an implementation of a nonlinear fuzzy control system. The summation symbol represents the integration operation,
which effectively makes the controller a PI-type fuzzy controller. The plant is a general nonlinear dynamic system as in the form of Eq. (2).
The control effort uðkÞ that drives the plant can be computed as follows:

uðkÞ ¼ uðk�1ÞþTΔuðkÞ
uðkÞ ¼ KoutuðkÞ ð26Þ
where ΔuðkÞ is the output of the first layer and Kout is the output scaling factor, which can be adjusted by the second and third layers.

As shown in Fig. 2, the first layer fuzzy mechanism uses two input signals, which are the error eðkÞ and the time rate of change of error
rðkÞ:

eðkÞ ¼ yref ðkÞ�yðkÞ; rðkÞ ¼ eðkÞ�eðk�1Þ
T

ð27Þ

where yref ðkÞ is the referenced signal, T is the sampling time, and k is the sampling instance. The scaling factors Ke and Kr of the input
signals are adopted to normalize the values of eðkÞ and rðkÞ :
eðkÞ ¼ KeeðkÞ; rðkÞ ¼ KrrðkÞ ð28Þ

Each input of the first layer has 2nþ1 membership-functions. The membership functions of the error and the time rate of change of the
error are denoted by Ei and Rj (Fig. 3), while the membership functions of the output are denoted by Uj (Fig. 4), with
i¼ �n; �nþ1;…;n�1;n and j¼ �m; �mþ1;…;m�1;m. Since the inputs are normalized into the range �1;1½ �, the distance L between
two adjacent membership functions is 1=n:

The fuzzy rules to calculate the controller output ΔuðkÞ are presented in linguistic form as follows:

Rule ði; jÞ : IF e is Ei AND r is Rj THENΔu is Ui;j ð29Þ
where Ui;j is the output membership function corresponding to the input membership functions Ei and Rj. The rule base of the first layer
(Table 1) is similar to the conventional PI fuzzy controller and can be regarded as a human expert who makes the decision for control effort
based on the input signals. In Table 1 (Xu and Shin, 2005), the entries near the center position, where the output signal is near the set
point, always have smaller values. A small control effort provides a fast convergence rate and reduces the overshoot when the signal is
near the set points. As the signal moves away from the set point, the control effort increases in order to reduce the transient time. It should
also be noted that the rule-base table is symmetric about the set point.

The second layer (Fig. 2) uses the error and the time rate of change of the error signals to adjust the output scaling factor of the first
layer to reduce the rise time and suppress the oscillation of the system output. In this layer, the change in output scaling factor ΔKαðkÞ is
computed by using the following fuzzy rules:

Rule ði; jÞ : If e is Ei and r is Rj thenΔKαðkÞ is Dα ð30Þ

Fig. 1. The closed-loop fuzzy control system.
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where Dα is the linguistic value of ΔKαðkÞ. The rule base for the second layer (Table 2) was developed based on the fuzzy rule base
designed by Mudi and Pal (1999). However, while Mudi and Pal's objective was to determine the value of the scaling factor based on the
error and the time rate of change of the error signal, the rule base in this paper is designed for the calculation of the necessary change in
the output scaling factor. As shown in Table 2, if there is a large error in the output signal while the output is moving away from the
reference signal (e-1; r-1 or e-�1; r-�1 ), the scaling factor is increased (Dα-0:5) so that the rise and settling time can be

Fig. 2. AMLFC controller.

Fig. 3. Input membership functions (a) Error, (b) Time rate of change of error.

Fig. 4. Output membership functions.
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reduced. When the system output is moving into the reference signal ðeUro0 Þ or the error and the time rate of change of the error are
very small (e-0; r-0), the scaling factor is reduced ðDα-�0:5Þ to suppress the amount of overshoot. This rule base is not unique and
modifications may be made in accordance with desired system responses.

In order to achieve the desired system performances such as rise time, settling time, and percent overshoot, the designer can specify a
reference model for the adaptation process. The objective of the third layer is to make the output of the closed-loop system approach that
of the reference model. This layer uses the performance error ϵ and the time rate of change of the performance error _ϵ between the output
of the control system and the reference model to tune the output scaling factor:

ϵðkÞ ¼ ydðkÞ�yðkÞ; _ϵðkÞ ¼ ϵðkÞ�ϵðk�1Þ
T

ð31Þ

where yd is the desired output of the reference model. The performance error and the time rate of change of performance error signals
have membership functions similar to those of the output error and the time rate of change of the error (Fig. 3).

Since the output error eðkÞ and the time rate of change of the error signal rðkÞ always exist whenever there is a change in command
signals, the performance errors ϵðkÞ and _ϵðkÞ are used instead of the output error signals. This way, the adaptation by the third layer can be
minimized when the system output has approached the reference model output. The rule base of the first layer (Table 1) is applied in the
third layer since they have similar functional objectives. Similarly to the first layer, the Mamdani fuzzy inference mechanism is also
applied in the third layer to compute the output scaling factor updating value ΔKβðkÞ by the following fuzzy rules:

Rule ði; jÞ : If ϵ is Ei and _ϵ is Rj thenΔKβðkÞ is Dβ ð32Þ

where Dβ is the linguistic value of ΔKβðkÞ, ϵ and _ϵ are the normalized values of the performance error, and the time rate of change of the
performance error by the same scaling factors as eðkÞ and rðkÞ:

ϵðkÞ ¼ KeϵðkÞ; _ϵðkÞ ¼ Kr _ϵðkÞ ð33Þ

With the addition of the second and third layers, the output scaling factor of the first layer can be calculated by using the following
formula:

KoutðkÞ ¼ min Koutðk�1ÞþαΔKαðkÞþβΔKβðkÞ;Kmax

� 	
ð34Þ

Table 1
Rule base of the first and third layer fuzzy controllers.

Time rate of change of the error

�1.0 �0.8 �0.6 �0.4 �0.2 0.0 0.2 0.4 0.6 0.8 1.0
�1.0 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00
�0.8 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 �0.10
�0.6 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 �0.10 �0.30
�0.4 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 �0.10 �0.30 �0.60
�0.2 1.00 1.00 0.80 0.60 0.30 0.11 0.00 �0.10 �0.30 �0.60 �0.80

Error 0.0 1.00 0.80 0.60 0.30 0.10 0.00 �0.10 �0.30 �0.60 �0.80 �1.00
0.2 0.80 0.60 0.30 0.10 0.00 �0.10 �0.31 �0.60 �0.80 �1.00 �1.00
0.4 0.60 0.30 0.10 0.00 �0.10 �0.30 �0.60 �0.80 �1.00 �1.00 �1.00
0.6 0.30 0.10 0.00 �0.10 �0.30 �0.60 �0.80 �1.00 �1.00 �1.00 �1.00
0.8 0.10 0.00 �0.10 �0.30 �0.60 �0.80 �1.00 �1.00 �1.00 �1.00 �1.00
1.0 0.00 �0.10 �0.30 �0.60 �0.80 �1.00 �1.00 �1.00 �1.00 �1.00 �1.00

Table 2
Fuzzy rule base for computation of Dα (second layer).

Time rate of change of the error

�1 �0.7 �0.3 0 0.3 0.7 1
�1 0.5 0.5 0.5 0.3 0.1 �0.1 �0.3
�0.8 0.5 0.5 0.3 0.1 �0.1 �0.3 �0.5
�0.6 0.5 0.3 0.1 �0.1 �0.3 �0.5 �0.5
�0.4 0.3 0.1 �0.1 �0.3 �0.5 �0.5 �0.5
�0.2 0.1 �0.1 �0.3 �0.4 �0.5 �0.5 �0.5

Error 0 �0.5 �0.5 �0.5 �0.5 �0.5 �0.5 �0.5
0.2 �0.5 �0.5 �0.5 �0.4 �0.3 �0.1 0.1
0.4 �0.5 �0.5 �0.5 �0.3 �0.1 0.1 0.3
0.6 �0.5 �0.5 �0.3 �0.1 0.1 0.3 0.5
0.8 �0.5 �0.5 �0.1 0.1 0.3 0.5 0.5
1 �0.3 �0.1 0.1 0.3 0.5 0.5 0.5
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where α and β are the adaptation rates of the second layer and the third layer, respectively. The minimum function in Eq. (34) ensures that
the output scaling factorKout does not exceed the maximum value Kmax at which the control system remains stable:

Kmax ¼ L
2 KeTþKrð Þ‖N‖pW

ð35Þ

where ‖N‖pW is the p-gain of the nonlinear plant as defined in Eq. (15). The derivation of Kmax and the stability analysis of the fuzzy control
systems are presented in the next section.

4. Stability condition for FBFN-based PI fuzzy control systems

By utilizing the small gain theorem, an approach similar to that proposed by Chen and Ying (1993) is used in the current work to obtain
the stability condition for the fuzzy control systems. However, the stability problem in Chen and Ying (1993) was divided by the locations
of the error and the time rate of change of the error with respect to zero. Hence, the upper bounds of the fuzzy controller have different
values whenever the error or the time rate of change of the error moves from one membership function to the other. The stability analysis
cannot be easily extended since the complexity of the problemwill grow significantly when the numbers of input and output membership
functions are increased. Therefore, only fuzzy controllers with two input and three output membership functions were analyzed by Chen
and Ying (1993). In this work, the stability problem is divided by the locations of the error and the time rate of change of the error with
respect to the activated membership functions, as shown in Fig. 5 and Table 3. Since the upper bounds of the fuzzy controller have been
found to have similar values in each location, the results can be generalized for fuzzy controllers with large numbers of input and output
membership functions.

The conditions of the error and the time rate of change of error relative to the activated membership functions for case 1 (Fig. 6) are given by:

L pþ1
2


 �
oeoLðpþ1Þ AND L qþ1

2


 �
oroLðqþ1Þ AND e�L pþ1

2


 �
or�L qþ1

2


 �
ð36Þ

Fig. 5. Locations of the error and the time rate of change of the error in relation to the activated membership functions.

Table 3
Conditions of error and rate of change in error.

Case Conditions of the error and the time rate of change of the error

1 L pþ1
2

� 

oeoLðpþ1Þ AND L qþ1

2

� 

oroLðqþ1Þ AND e�L pþ1

2

� 

or�L qþ1

2

� 

2 L pþ1

2

� 

oeoLðpþ1Þ AND L qþ1

2

� 

oroLðpþ1Þ AND e�L pþ1

2

� 

4r�L qþ1

2

� 

3 LpoeoL pþ1

2

� 

AND L qþ1

2

� 

oroLðqþ1Þ AND L pþ1

2

� 
�eor�L qþ1
2

� 

4 LpoeoL pþ1

2

� 

AND L qþ1

2

� 

oroLðqþ1Þ AND L pþ1

2

� 
�e4r�L qþ1
2

� 

5 L pþ1

2

� 

oeoLðpþ1Þ AND LqoroL qþ1

2

� 

AND e�L pþ1

2

� 

oL qþ1

2

� 
�r
6 L pþ1

2

� 

oeoLðpþ1Þ AND LqoroL qþ1

2

� 

AND e�L pþ1

2

� 

4L qþ1

2

� 
�r
7 LpoeoL pþ1

2

� 

AND LqoroL qþ1

2

� 

AND e�Lpor�Lq

8 LpoeoL pþ1
2

� 

AND LqoroL qþ1

2

� 

AND e�Lp4r�Lq
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By assuming that Ep, Epþ1, Rq, and Rqþ1 are four non-zero input membership functions of the error and the time rate of change of the error, the
membership values can be found as follows:

μEfpg ¼
Lðpþ1Þ�Kee

L
; μEfpþ 1g ¼

Kee�Lp
L

ð37Þ

μRfqg ¼
Lðqþ1Þ�Krr

L
; μRfqþ 1g ¼

Krr�Lq
L

ð38Þ

The premises Hi;j ði¼ p; pþ1 and j¼ q; qþ1Þ of the four activated rules for case 1 are calculated by using the minimum operations:

Hp;q ¼ min μEp ðeÞ;μRq
ðrÞ

� 	
¼ μRq

ðrÞ ¼ Lðqþ1Þ�Krr
L

ð39Þ

Hpþ1;q ¼ min μEpþ 1
ðeÞ;μRq

ðrÞ
� 	

¼ μRq
ðrÞ ¼ Lðqþ1Þ�Krr

L
ð40Þ

Hp;qþ1 ¼ min μEp ðeÞ;μRqþ 1
ðrÞ

� 	
¼ μEp ðeÞ ¼

Lðpþ1Þ�Kee
L

ð41Þ

Hpþ1;qþ1 ¼ min μEpþ 1
ðeÞ;μRqþ 1

ðrÞ
� 	

¼ μEpþ 1
ðeÞ ¼ Kee�Lp

L
ð42Þ

The change in control output ΔuðkÞ can be calculated by using singleton fuzzification, minimum inference, and centroid defuzzification
methods:

ΔuðkÞ ¼
∑
i;j
Ui;j ⋅ min μEi

ðeÞ;μEj ðrÞ
h i

∑
i;j
min μEi ðeÞ;μEj ðrÞ
h i ¼

∑
i;j
Ui;j⋅Hi;j

∑
i;j
Hi;j

; ði¼ p;pþ1 and j¼ q; qþ1Þ

¼
Up;qLðqþ1Þ�Krr

L
þUpþ1;qLðqþ1Þ�Krr

L
þUp;qþ1Lðpþ1Þ�Kee

L
þUpþ1;qþ1Kee�Lp

L
Lðqþ1Þ�Krr

L
þLðqþ1Þ�Krr

L
þLðpþ1Þ�Kee

L
þKee�Lp

L

¼ �Up;qþ1þUpþ1;qþ1Keeþ�Up;q�Upþ1;qKrrþqLUp;qþUpþ1;qþpLUp;qþ1�Upþ1;qþ1þLUp;qþUpþ1;qþUp;qþ1

2qLþ3L�2Krr

ð43Þ

By repeating the same procedure for all other cases, the change in control output ΔuðkÞ can be formulated into the following form:

ΔuðkÞ ¼ GeKeeþGrKrrþC
D

ð44Þ

where the parameters Ge, Gr , C and D are given in Tables 4 and 5.
From here, the stability condition for nonlinear PI fuzzy control systems can be stated as follows:

Theorem 2. The sufficient conditions for the nonlinear PI fuzzy control system shown in Fig. 1 to be input-and-output stable are as follows:

1. The nonlinear process has a finite p-gain: ∥N∥pW o∞
2. The maximum output scaling factor of the PI fuzzy controller satisfies the following condition:

Kout ≤Kmax ¼
L

2KeTþKr∥N∥pW
ð45Þ

Proof: First, a closed-loop system is constructed in such a way that it is mathematically equivalent to the fuzzy control system shown in
Fig. 1. The equivalent system includes two nonlinear processes connected in a feedback loop (Fig. 7), S1 and S2, which are defined as
follows:

S1ðe1ðkÞÞ ¼ TΔuðkÞ ¼ T GeKe þGrKr
Tð ÞeðkÞ�GrKr

T eðk�1ÞþC
2qLþ3L�2Krr

S2ðe2ðkÞÞ ¼NðuðkÞÞ ¼NðKoute2ðkÞÞ ð46Þ

Fig. 6. Locations of the error and the time rate of change of the error in Case 1.
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where NðuðkÞÞ is the nonlinear operator that represents the plant. The inputs of the equivalent closed-loop system are u1 and u2:

u1ðkÞ ¼ yref ðkÞ; u2ðkÞ ¼
uðk�1Þ
Kout

ð47Þ

From the schematic diagram in Fig. 7, the values of e1ðkÞ and e2ðkÞ can be found as follows:

e1ðkÞ ¼ u1ðkÞ�S2ðe2ðkÞÞ ¼ ydðkÞ�NðuðkÞÞ ¼ eðkÞ ð48Þ

e2ðkÞ ¼ S1ðe1ðkÞÞþu2ðkÞ ¼ TΔuðkÞþuðk�1Þ
Kout

¼ uðkÞ
Kout

¼ uðkÞ ð49Þ

In Case 1, since KrroLðqþ1Þ, the following inequalities can be obtained:

D¼ 2qLþ3L�2Krr4L40 ð50Þ
and

GeKeþ
GrKr

T


 �
eðkÞ�GrKr

T
eðk�1ÞþCr GeKeþ

GrKr

T

����
���� e1ðkÞ�� ��þ �GrKr

T
eðk�1ÞþC

����
����

rT GeKej jþ GrKrj j
T

e1ðkÞ
�� ��þT Cj jþ GrKrj j eðk�1Þ

�� ��
T

ð51Þ

As the output membership functions Ui;j are bounded by �1;1½ �, the following were used:

�Up;qþ1þUpþ1;qþ1
�� ��r Up;qþ1

�� ��þ Upþ1;qþ1
�� ��r2

Up;q�Upþ1;q
�� ��r Up;q

�� ��þ Upþ1;q
�� ��r2 ð52Þ

From the definition of S1ðe1ðkÞÞ in Eq. (46), the values of Ge and Gr for case 1 in Table 4, and the inequalities in Eq. (50), (51), and (52),
the upper bound of S1ðe1ðkÞÞ can be computed as follows:

S1ðe1ðkÞÞ ¼ T
GeKeþGrKr

T

� 

eðkÞ�GrKr

T eðk�1ÞþC
2qLþ3L�2Krr

rT GeKej jþ GrKrj j
L

e1ðkÞ
�� ��þT Cj jþ GrKrj j eðk�1Þ

�� ��
L

Table 4
Values of Ge, Gr, and D.

Case Ge Gr D

1 �Up;qþ1þUpþ1;qþ1 �Up;q�Upþ1;q 2qLþ3L�2Krr
2 �Up;q�Up;qþ1 �Upþ1;qþUpþ1;qþ1 2Lpþ3L�2Kee
3 �Up;qþ1þUpþ1;qþ1 �Up;q�Upþ1;q 2qLþ3L�2Krr
4 Upþ1;qþUpþ1;qþ1 �Up;qþUp;qþ1 2KeeþL�2Lp
5 �Up;qþUpþ1;q Up;qþ1þUpþ1;qþ1 2Krr�2qLþL
6 �Up;q�Up;qþ1 �Upþ1;qþUpþ1;qþ1 2Lpþ3L�2Kee
7 Upþ1;qþUpþ1;qþ1 �Up;qþUp;qþ1 2KeeþL�2Lp
8 �Up;qþUpþ1;q Up;qþ1þUpþ1;qþ1 2Krr�2qLþL

Table 5
Values of C.

Case C

1 qL Up;qþUpþ1;q
� 
þpL Up;qþ1�Upþ1;qþ1

� 
þL Up;qþUpþ1;qþUp;qþ1
� 


2 qL Upþ1;q�Upþ1;qþ1
� 
þpL Up;qþUp;qþ1

� 
þL Up;qþUpþ1;qþUp;qþ1
� 


3 qL Up;qþUpþ1;q
� 
þpL Up;qþ1�Upþ1;qþ1

� 
þL Up;qþUpþ1;qþUp;qþ1
� 


4 qL Up;q�Up;qþ1
� 
þpL �Upþ1;q�Upþ1;qþ1

� 
þLUp;q

5 qL �Up;qþ1�Upþ1;qþ1
� 
þpL Up;q�Upþ1;q

� 
þLUp;q

6 qL Upþ1;q�Upþ1;qþ1
� 
þpL Up;q�Up;qþ1

� 
þL Up;qþUpþ1;qþUp;qþ1
� 


7 qL Up;q�Up;qþ1
� 
þpL Upþ1;q�Upþ1;qþ1

� 
þLUp;q

8 qL �Up;qþ1�Upþ1;qþ1
� 
þpL Up;q�Upþ1;q

� 
þLUp;q

Fig. 7. An equivalent closed-loop control system.
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¼ TKe �Up;qþ1þUpþ1;qþ1
�� ��þKr Up;q�Upþ1;q

�� ��
L

e1ðkÞ
�� ��þT Cj jþ GrKrj jMe

L

r2 KeTþKrð Þ
L

e1ðkÞ
�� ��þT Cj jþ GrKrj jMe

L
¼ γ1 e1ðkÞ

�� ��þβ1 ð53Þ

where Me is the maximum magnitude of the error signal Me ¼ sup
kZ0

eðkÞ
�� ��, and

γ1 ¼
2 KeTþKrð Þ

L
; β1 ¼

T Cj jþ GrKrj jMe

L
ð54Þ

Similarly, the upper bound of S2ðe2ðkÞÞ can be obtained by using the properties of norm operations as follows:

S2ðe2ðkÞÞ ¼NðKoute2ðkÞÞrKout‖N‖pW e2ðkÞ
�� ��¼ γ2 e2ðkÞ

�� �� ð55Þ

where ‖N‖pW is the gain of the nonlinear operator Nð�Þ defined in Eq. (15) and γ2 ¼ Kout‖N‖pW .
From Eq. (54) and the fact that the operator S1 can be considered as a time-varying linear system, the gain of the operator S1 becomes:

‖S1‖pW ¼ γ1; ð56Þ
which is a finite number. By applying the small gain theorem to the feedback system in Fig. 7, the requirements for the fuzzy closed-loop
system to be stable input-output are obtained as follows:

γ2 ¼ Kout‖N‖pW o1 and γ1γ2o1 ð57Þ
Because Kouto1, by substituting γ1 and γ2 found above into Eq. (57), the stability requirements become:

‖N‖pW o1 and
2 KeTþKrð Þ

L
Kout‖N‖pW o1 ð58Þ

Repeating the same procedure will also yield the same results for the remaining cases. Therefore, the maximum output scaling factor of
the fuzzy controller is as follows:

Kmax ¼ L
2KeTþKr∥N∥pW

ð59Þ

Theorem 2. provides a systematic stability condition for controlling nonlinear systems by using PI fuzzy controllers. The proposed stability
condition is a simple design practice since it only requires the output scaling-factor of a PI fuzzy controller to be bounded. For future
works, the stability theory can be extended into PID fuzzy control systems by utilizing the structural analysis of the PID controller
proposed by Haj-Ali and Ying (2004, 2003).

5. Simulation Results

Performance comparisons between the AMLFC and the robust adaptive fuzzy controller (RAFC) proposed by Wu et al. (2013) are
presented in this section. MATLAB/SIMULINK simulations were conducted on a three-dimensional tower crane system (Wu et al., 2013).

The control variables of the tower crane system are the tower motor voltage Mθ (V) and the trolley motor voltage MF (V):

u1 ¼Mθ ; u2 ¼MF ð60Þ
Four outputs of the system are the distance between the trolley and the tower xp, the slew angle of the tower θγ , the deflection angles α

and β of the payload in the Y-Z, and the X-Z plane.
By using x11 ¼ xp, x12 ¼ _xp, x21 ¼ β, x22 ¼ _β, x31 ¼ θr , x32 ¼ _θr , x41 ¼ α, x42 ¼ _α as the state variables, the equations of motion of the tower

crane system are given by (Wu et al., 2013):

_x12 ¼ Kmxu1�mtgx21þh1ðtÞx11ðt�τ1Þþd1

_x22 ¼
Kmx

L
u1�

mtg
L

x21�
g
L
x21�

Kmrx41u2

1þMrx211
�mrgx11x241

1þMrx211
þh2ðtÞx21ðt�τ2Þþd2

_x32 ¼
Kmru2þmrgx11x41

1þMrx211
þh3ðtÞx31ðt�τ3Þþd3

_x42 ¼
ðKmru2þmrgx11x41Þx21

1þMrx211
�gx41

L
�ðKmru2þmrgx11x41Þx11

1þMrx211
þh4ðtÞx41ðt�τ4Þþd4 ð61Þ

Table 6
Parameters of the tower crane system (Wu et al., 2013).

Parameter Notation Value

Payload length L 0.1 m
Mass of trolley M 0.465 kg
Mass of payload m 0.125 kg
Payload mass relative to J0 mr 0.142 kg
Trolley mass relative to J0 Mr 0.53 kg
Motor equivalent moment of inertia J0 0.877 kg m2

Acceleration gain for trolley servo Kmx 0.9 m/s2

Acceleration gain for tower servo Kmr 3.33 rad/s2V

P.D. Ngo, Y.C. Shin / Engineering Applications of Artificial Intelligence 42 (2015) 1–15 11



where τ1 ¼ 0:2s; τ2 ¼ 0:1s; τ3 ¼ 0:15s, τ4 ¼ 0:1s are time-delay constants, mt ¼m=M, hqðtÞ; q¼ 1:::4 are time-varying functions:

h1 ¼ h3 ¼ 0:01 sin ðtÞ; h2 ¼ h4 ¼ 0:01 cos ðtÞ ð62Þ
The disturbances d1, d2, d3, and d4 are functions of time:

d1 ¼ d3 ¼ 0:1 sin ðtÞexpð�0:2tÞ; d2 ¼ d4 ¼ 0:1 cos ðtÞexpð�0:2tÞ ð63Þ
Other system parameters can be found in Table 6.

With the following simple feedback gains to stabilize the plant:

K¼ ½ k11 k12 k21 k22 k31 k32 k41 k42 � ¼ ½1 1 0 0 1 1 �10 �10 �; ð64Þ
the equations of the system then become:

_x12 ¼ Kmxðζ1�k1x11�k2x12Þ�mtgx21þh1ðtÞx11ðt�τ1Þþd1

_x22 ¼
Kmx

L
ðζ1�k1x11�k2x12Þ�

mtg
L

x21�
g
L
x21�

Kmrx41ðζ2�k31x31�k32x32�k41x41�k42x42Þ
1þMrx211

�mrgx11x241
1þMrx211

þh2ðtÞx21ðt�τ2Þþd2

_x32 ¼
Kmrðζ2�k31x31�k32x32�k41x41�k42x42Þþmrgx11x41

1þMrx211
þh3ðtÞx31ðt�τ3Þþd3

_x42 ¼
½Kmrðζ2�k31x31�k32x32�k41x41�k42x42Þþmrgx11x41�x21

1þMrx211
�gx41

L
�ðKmru2þmrgx11x41Þx11

1þMrx211
þh4ðtÞx41ðt�τ4Þþd4 ð65Þ

where ζ1 and ζ2 are new system inputs. Since the inputs and outputs of the system are uncoupled, the feedback system can be divided
into two independent subsystems: y1 ¼N1ðγ1Þ and y2 ¼N2ðγ2Þ:

By using least square methods and genetic algorithms (Lee and Shin, 2003), the training of the FBFNs was conducted on MATLAB. Fig. 8
shows the non-dimensional error indices (NDEI) during the training process. Two FBFN models with 61 and 26 hidden nodes were
obtained to approximate the first and the second process, respectively:

Rule i ðu1�y1Þ :
Ifu1ðk�1Þ ¼ Ai

11; :::; u1ðk�6Þ ¼ Ai
16

y1ðk�1Þ ¼ Bi
11 ; :::; y1ðk�6Þ ¼ Bi

16

then y1ðkÞ ¼ bi1

;

Rule i ðu2�y2Þ :
Ifu2ðk�1Þ ¼ Ai

21; …; u1ðk�3Þ ¼ Ai
23

y2ðk�1Þ ¼ Bi
21; … ; y2ðk�3Þ ¼ Bi

23

then y2ðkÞ ¼ bi2

;

From the obtained FBFNs, linearized models of the systems at different operating conditions were calculated by Eq. (9). Their H1
norms can then be found by using the non-smooth Newton's method (Gerdts, 2008) and are given in Fig. 9 for all the training data sets.

Fig. 8. NDEI during FBFN training of the tower crane system.

Fig. 9. H1 norm of the tower crane's local systems.
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The L2-gains of the FBFNs were estimated by taking the maximum values of the linearized models' H1 norms:

∥N1∥2W ¼ 0:1; ∥N2∥2W ¼ 0:04 ð66Þ
where ∥N1∥2W and ∥N2∥2W denote the L2-gains of the first process (γ1�y1), and the second process ðγ2�y2Þ respectively;W represents the
input space W9fuAℝg.

The reference signals for the trolley translational position and the jib angular position are 0.06 m, respectively. Two AMLFCs were used
to control the two subsystems. The scaling factors for three layers of each fuzzy controller were selected as follows:

Ke1 ¼ 6; Kr1 ¼ 0:1; Kϵ1 ¼ 30; K _ϵ1 ¼ 30; Kout1ðinitialÞ ¼ 3; α1 ¼ 0:01; β1 ¼ 2 ð67Þ

Ke2 ¼ 1; Kr2 ¼ 0:1; Kϵ2 ¼ 0:1; K _ϵ2 ¼ 30; Kout2ðinitialÞ ¼ 1; α2 ¼ 0:001; β2 ¼ 0:01 ð68Þ

By using the stability criteria proposed in Section 4, the maximum output scaling-factor of the AMLFCs can be calculated as follows:

Kmax 1 ¼
L

2KeTþKr∥N1∥2W
¼ 0:2
2ð6⋅0:01þ0:1Þ⋅0:1¼ 6:25 ð69Þ

Kmax 2 ¼
L

2KeTþKr∥N2∥2W
¼ 0:2
2ð1⋅0:01þ0:1Þ⋅0:04¼ 22:7 ð70Þ

Fig. 10 shows the responses of the tower crane system controlled by the AMLFC versus the RAFC. It shows that both the outputs of the
tower crane controlled by the AMLFC achieve steady state values in approximately five seconds, which is much faster compared with those

Fig. 11. Output scaling factor of the AMLFCs during control of the tower crane system.

Fig. 10. System response comparison between the AMLFC (solid) and RAFC (dash).
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controlled by the RAFC. There is also significantly less oscillation with the AMLFC due to the adaptation of the output scaling factors as
shown in Fig. 11, even though the control efforts of the AMLFC are smoother than the control efforts of the RAFC. The overshoots of both
outputs of the AMLFC control system are less than ten percents. The adaptation also makes the output responses of the AMLFC follow the
desired reference trajectory very closely.

6. Conclusion

A new technique to estimate the dynamic gains of nonlinear systems was presented based on the parameters of the FBFN. Two
methods were provided to calculate the L2 gain and L1 gain of FBFN systems by finding the maximum norm value of the local systems and
by solving the non-smooth optimal control problem respectively. Based on the proposed methods, an adaptive multilevel fuzzy controller
(AMFLC) was proposed with a mechanism to tune the output scaling factor. The first layer of the AMFLC acts as a conventional fuzzy
controller, while the second and third layers are used to tune the output scaling factor of the controller by using a fuzzy rule base.
Furthermore, a new stability analysis was derived for a nonlinear PI fuzzy control system by using small gain theorem. From the proposed
stability analysis, the only design parameter that is needed for a stable fuzzy control system is the maximum output scaling factor of the
fuzzy controller. Simulations conducted on a tower crane system provided the superior performance of the proposed AMLFC over the
RAFC. With the self-tuning ability of the AMLFC output scaling factor, the control systems stayed within the stable condition. The
simulation results showed that the responses of the AMLFC produced a better output transient performance in terms of oscillation and
settling time, while the control efforts of the AMLFC were smoother than the control efforts of the RAFC.
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